Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data

Autores
Guisande Donadio, Sabrina Natali; Pallares Di Nunzio, Monserrat; Martinez, Nataniel; Rosso, Osvaldo Anibal; Montani, Fernando Fabián
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson’s and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input–output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher’s information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity–entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.
Fil: Guisande Donadio, Sabrina Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Pallares Di Nunzio, Monserrat. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
biological and artificial neural systems
Parkinson’s and epilepsy patients
replicating chaotic brain dynamics
subthalamic nucleus region
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/242879

id CONICETDig_1ba764b65fdf45dbc763920c90a7674c
oai_identifier_str oai:ri.conicet.gov.ar:11336/242879
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological dataGuisande Donadio, Sabrina NataliPallares Di Nunzio, MonserratMartinez, NatanielRosso, Osvaldo AnibalMontani, Fernando Fabiánbiological and artificial neural systemsParkinson’s and epilepsy patientsreplicating chaotic brain dynamicssubthalamic nucleus regionhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson’s and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input–output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher’s information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity–entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.Fil: Guisande Donadio, Sabrina Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Pallares Di Nunzio, Monserrat. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Institute of Physics2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/242879Guisande Donadio, Sabrina Natali; Pallares Di Nunzio, Monserrat; Martinez, Nataniel; Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data; American Institute of Physics; Chaos; 33; 4-2023; 43111-4311301054-1500CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142773info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/33/4/043111/2882756/Chaotic-dynamics-of-the-Henon-map-and-neuronalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:32Zoai:ri.conicet.gov.ar:11336/242879instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:33.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
title Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
spellingShingle Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
Guisande Donadio, Sabrina Natali
biological and artificial neural systems
Parkinson’s and epilepsy patients
replicating chaotic brain dynamics
subthalamic nucleus region
title_short Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
title_full Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
title_fullStr Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
title_full_unstemmed Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
title_sort Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data
dc.creator.none.fl_str_mv Guisande Donadio, Sabrina Natali
Pallares Di Nunzio, Monserrat
Martinez, Nataniel
Rosso, Osvaldo Anibal
Montani, Fernando Fabián
author Guisande Donadio, Sabrina Natali
author_facet Guisande Donadio, Sabrina Natali
Pallares Di Nunzio, Monserrat
Martinez, Nataniel
Rosso, Osvaldo Anibal
Montani, Fernando Fabián
author_role author
author2 Pallares Di Nunzio, Monserrat
Martinez, Nataniel
Rosso, Osvaldo Anibal
Montani, Fernando Fabián
author2_role author
author
author
author
dc.subject.none.fl_str_mv biological and artificial neural systems
Parkinson’s and epilepsy patients
replicating chaotic brain dynamics
subthalamic nucleus region
topic biological and artificial neural systems
Parkinson’s and epilepsy patients
replicating chaotic brain dynamics
subthalamic nucleus region
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson’s and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input–output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher’s information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity–entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.
Fil: Guisande Donadio, Sabrina Natali. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Pallares Di Nunzio, Monserrat. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Martinez, Nataniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Rosso, Osvaldo Anibal. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Montani, Fernando Fabián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description In this study, the Hénon map was analyzed using quantifiers from information theory in order to compare its dynamics to experimental data from brain regions known to exhibit chaotic behavior. The goal was to investigate the potential of the Hénon map as a model for replicating chaotic brain dynamics in the treatment of Parkinson’s and epilepsy patients. The dynamic properties of the Hénon map were compared with data from the subthalamic nucleus, the medial frontal cortex, and a q-DG model of neuronal input–output with easy numerical implementation to simulate the local behavior of a population. Using information theory tools, Shannon entropy, statistical complexity, and Fisher’s information were analyzed, taking into account the causality of the time series. For this purpose, different windows over the time series were considered. The findings revealed that neither the Hénon map nor the q-DG model could perfectly replicate the dynamics of the brain regions studied. However, with careful consideration of the parameters, scales, and sampling used, they were able to model some characteristics of neural activity. According to these results, normal neural dynamics in the subthalamic nucleus region may present a more complex spectrum within the complexity–entropy causality plane that cannot be represented by chaotic models alone. The dynamic behavior observed in these systems using these tools is highly dependent on the studied temporal scale. As the size of the sample studied increases, the dynamics of the Hénon map become increasingly different from those of biological and artificial neural systems.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/242879
Guisande Donadio, Sabrina Natali; Pallares Di Nunzio, Monserrat; Martinez, Nataniel; Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data; American Institute of Physics; Chaos; 33; 4-2023; 43111-431130
1054-1500
CONICET Digital
CONICET
url http://hdl.handle.net/11336/242879
identifier_str_mv Guisande Donadio, Sabrina Natali; Pallares Di Nunzio, Monserrat; Martinez, Nataniel; Rosso, Osvaldo Anibal; Montani, Fernando Fabián; Chaotic dynamics of the Hénon map and neuronal input–output: a comparison with neurophysiological data; American Institute of Physics; Chaos; 33; 4-2023; 43111-431130
1054-1500
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1063/5.0142773
info:eu-repo/semantics/altIdentifier/url/https://pubs.aip.org/aip/cha/article-abstract/33/4/043111/2882756/Chaotic-dynamics-of-the-Henon-map-and-neuronal
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Institute of Physics
publisher.none.fl_str_mv American Institute of Physics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613401599279104
score 13.070432