The frame of fixed stars in Relational Mechanics
- Autores
- Ferraro, Rafael
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina - Materia
-
Classical Mechanics
Mach'S Principle
Relational Mechanics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18138
Ver los metadatos del registro completo
id |
CONICETDig_1b6213adec4b1571b677b38e8c2c6a46 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18138 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The frame of fixed stars in Relational MechanicsFerraro, RafaelClassical MechanicsMach'S PrincipleRelational Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaSpringer2016-10-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18138Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-880015-9018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10701-016-0042-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10701-016-0042-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:19Zoai:ri.conicet.gov.ar:11336/18138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:19.438CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The frame of fixed stars in Relational Mechanics |
title |
The frame of fixed stars in Relational Mechanics |
spellingShingle |
The frame of fixed stars in Relational Mechanics Ferraro, Rafael Classical Mechanics Mach'S Principle Relational Mechanics |
title_short |
The frame of fixed stars in Relational Mechanics |
title_full |
The frame of fixed stars in Relational Mechanics |
title_fullStr |
The frame of fixed stars in Relational Mechanics |
title_full_unstemmed |
The frame of fixed stars in Relational Mechanics |
title_sort |
The frame of fixed stars in Relational Mechanics |
dc.creator.none.fl_str_mv |
Ferraro, Rafael |
author |
Ferraro, Rafael |
author_facet |
Ferraro, Rafael |
author_role |
author |
dc.subject.none.fl_str_mv |
Classical Mechanics Mach'S Principle Relational Mechanics |
topic |
Classical Mechanics Mach'S Principle Relational Mechanics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory. Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina |
description |
Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18138 Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-88 0015-9018 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18138 |
identifier_str_mv |
Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-88 0015-9018 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10701-016-0042-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10701-016-0042-7 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981286997655552 |
score |
12.48226 |