The frame of fixed stars in Relational Mechanics

Autores
Ferraro, Rafael
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Materia
Classical Mechanics
Mach'S Principle
Relational Mechanics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18138

id CONICETDig_1b6213adec4b1571b677b38e8c2c6a46
oai_identifier_str oai:ri.conicet.gov.ar:11336/18138
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The frame of fixed stars in Relational MechanicsFerraro, RafaelClassical MechanicsMach'S PrincipleRelational Mechanicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaSpringer2016-10-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18138Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-880015-9018CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10701-016-0042-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10701-016-0042-7info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:23:19Zoai:ri.conicet.gov.ar:11336/18138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:23:19.438CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The frame of fixed stars in Relational Mechanics
title The frame of fixed stars in Relational Mechanics
spellingShingle The frame of fixed stars in Relational Mechanics
Ferraro, Rafael
Classical Mechanics
Mach'S Principle
Relational Mechanics
title_short The frame of fixed stars in Relational Mechanics
title_full The frame of fixed stars in Relational Mechanics
title_fullStr The frame of fixed stars in Relational Mechanics
title_full_unstemmed The frame of fixed stars in Relational Mechanics
title_sort The frame of fixed stars in Relational Mechanics
dc.creator.none.fl_str_mv Ferraro, Rafael
author Ferraro, Rafael
author_facet Ferraro, Rafael
author_role author
dc.subject.none.fl_str_mv Classical Mechanics
Mach'S Principle
Relational Mechanics
topic Classical Mechanics
Mach'S Principle
Relational Mechanics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.
Fil: Ferraro, Rafael. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
description Relational mechanics is a gauge theory of classical mechanics whose laws do not govern the motion of individual particles but the evolution of the distances between particles. Its formulation gives a satisfactory answer to Leibniz’s and Mach’s criticisms of Newton’s mechanics: relational mechanics does not rely on the idea of an absolute space. When describing the behavior of small subsystems with respect to the so called “fixed stars”, relational mechanics basically agrees with Newtonian mechanics. However, those subsystems having huge angular momentum will deviate from the Newtonian behavior if they are described in the frame of fixed stars. Such subsystems naturally belong to the field of astronomy; they can be used to test the relational theory.
publishDate 2016
dc.date.none.fl_str_mv 2016-10-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18138
Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-88
0015-9018
CONICET Digital
CONICET
url http://hdl.handle.net/11336/18138
identifier_str_mv Ferraro, Rafael; The frame of fixed stars in Relational Mechanics; Springer; Foundations Of Physics; 47; 1; 7-10-2016; 71-88
0015-9018
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10701-016-0042-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10701-016-0042-7
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981286997655552
score 12.48226