Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage

Autores
Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.
Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España
Fil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; Francia
Materia
BACTERIAL NANOCELLULOSE
CEMENT PASTE
CHEMO-HYDRO-MECHANICAL COUPLINGS
CO2 GEOLOGICAL STORAGE
RESERVOIR TEMPERATURE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/155182

id CONICETDig_1b4360804733dfa735618a963f959563
oai_identifier_str oai:ri.conicet.gov.ar:11336/155182
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storageBarría, Juan CruzManzanal, DiegoCerrutti, PatriciaPereira, Jean MichelBACTERIAL NANOCELLULOSECEMENT PASTECHEMO-HYDRO-MECHANICAL COUPLINGSCO2 GEOLOGICAL STORAGERESERVOIR TEMPERATUREhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; EspañaFil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; FranciaElsevier2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155182Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-152352-3808CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352380821000356info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gete.2021.100267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:53Zoai:ri.conicet.gov.ar:11336/155182instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:53.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
title Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
spellingShingle Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
Barría, Juan Cruz
BACTERIAL NANOCELLULOSE
CEMENT PASTE
CHEMO-HYDRO-MECHANICAL COUPLINGS
CO2 GEOLOGICAL STORAGE
RESERVOIR TEMPERATURE
title_short Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
title_full Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
title_fullStr Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
title_full_unstemmed Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
title_sort Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
dc.creator.none.fl_str_mv Barría, Juan Cruz
Manzanal, Diego
Cerrutti, Patricia
Pereira, Jean Michel
author Barría, Juan Cruz
author_facet Barría, Juan Cruz
Manzanal, Diego
Cerrutti, Patricia
Pereira, Jean Michel
author_role author
author2 Manzanal, Diego
Cerrutti, Patricia
Pereira, Jean Michel
author2_role author
author
author
dc.subject.none.fl_str_mv BACTERIAL NANOCELLULOSE
CEMENT PASTE
CHEMO-HYDRO-MECHANICAL COUPLINGS
CO2 GEOLOGICAL STORAGE
RESERVOIR TEMPERATURE
topic BACTERIAL NANOCELLULOSE
CEMENT PASTE
CHEMO-HYDRO-MECHANICAL COUPLINGS
CO2 GEOLOGICAL STORAGE
RESERVOIR TEMPERATURE
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.
Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España
Fil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; Francia
description Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/155182
Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-15
2352-3808
CONICET Digital
CONICET
url http://hdl.handle.net/11336/155182
identifier_str_mv Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-15
2352-3808
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352380821000356
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gete.2021.100267
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614400095289344
score 13.070432