Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage
- Autores
- Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.
Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; Francia
Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España
Fil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; Francia - Materia
-
BACTERIAL NANOCELLULOSE
CEMENT PASTE
CHEMO-HYDRO-MECHANICAL COUPLINGS
CO2 GEOLOGICAL STORAGE
RESERVOIR TEMPERATURE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155182
Ver los metadatos del registro completo
id |
CONICETDig_1b4360804733dfa735618a963f959563 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155182 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storageBarría, Juan CruzManzanal, DiegoCerrutti, PatriciaPereira, Jean MichelBACTERIAL NANOCELLULOSECEMENT PASTECHEMO-HYDRO-MECHANICAL COUPLINGSCO2 GEOLOGICAL STORAGERESERVOIR TEMPERATUREhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells.Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; FranciaFil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; EspañaFil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; FranciaElsevier2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155182Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-152352-3808CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352380821000356info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gete.2021.100267info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:53Zoai:ri.conicet.gov.ar:11336/155182instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:53.562CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
title |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
spellingShingle |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage Barría, Juan Cruz BACTERIAL NANOCELLULOSE CEMENT PASTE CHEMO-HYDRO-MECHANICAL COUPLINGS CO2 GEOLOGICAL STORAGE RESERVOIR TEMPERATURE |
title_short |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
title_full |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
title_fullStr |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
title_full_unstemmed |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
title_sort |
Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage |
dc.creator.none.fl_str_mv |
Barría, Juan Cruz Manzanal, Diego Cerrutti, Patricia Pereira, Jean Michel |
author |
Barría, Juan Cruz |
author_facet |
Barría, Juan Cruz Manzanal, Diego Cerrutti, Patricia Pereira, Jean Michel |
author_role |
author |
author2 |
Manzanal, Diego Cerrutti, Patricia Pereira, Jean Michel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BACTERIAL NANOCELLULOSE CEMENT PASTE CHEMO-HYDRO-MECHANICAL COUPLINGS CO2 GEOLOGICAL STORAGE RESERVOIR TEMPERATURE |
topic |
BACTERIAL NANOCELLULOSE CEMENT PASTE CHEMO-HYDRO-MECHANICAL COUPLINGS CO2 GEOLOGICAL STORAGE RESERVOIR TEMPERATURE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells. Fil: Barría, Juan Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de la Patagonia "San Juan Bosco"; Argentina. Centre National de la Recherche Scientifique; Francia Fil: Manzanal, Diego. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Politécnica de Madrid; España Fil: Cerrutti, Patricia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Pereira, Jean Michel. Centre National de la Recherche Scientifique; Francia |
description |
Storing CO2 in deep underground reservoirs is key to reducing emissions to the atmosphere and standing against climate change. However, the risk of CO2 leakage from geological reservoirs to other rock formations requires a careful long-term analysis of the system. Mostly, oil well cement used for the operation must withstand the carbonation process that changes its poromechanical behavior over time, possibly affecting the system’s integrity. This work focuses on the microstructure and mechanical behavior of cement modified with bacterial nanocellulose (BNC) cured at 90 ◦C, simulating temperature at the reservoir level. The chemohydro-mechanical (CHM) coupled behavior of the cement–rock interface is also investigated through numerical analyses. Mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), ultrasonic wave velocity measurement, and unconfined compressive strength (UCS) tests were performed on cement samples subjected to a supercritical CO2 environment. After carbonation, BNC samples show a lower mass gain and lower porosity compared to PC. Permeability based on MIP results indicate that the BNC reduces the permeability of the specimen. XRD quantification shows no substantial difference between the crystalline phases of the two samples. Samples with BNC have lower absolute strength but higher relative increase during carbonation. The numerical study includes a homogenization of the medium considering the contribution of all components. CHM behavior of the cement with BNC is analyzed, and the results show the variations of the physical and chemical properties across the sample. The numerical study shows the advantage of using this type of tool to study realistic CO2 injection scenarios in deep wells. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155182 Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-15 2352-3808 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155182 |
identifier_str_mv |
Barría, Juan Cruz; Manzanal, Diego; Cerrutti, Patricia; Pereira, Jean Michel; Cement with bacterial nanocellulose cured at reservoir temperature: Mechanical performance in the context of CO2 geological storage; Elsevier; Geomechanics for Energy and the Environment; 2021; 7-2021; 1-15 2352-3808 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S2352380821000356 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.gete.2021.100267 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614400095289344 |
score |
13.070432 |