Solution-based synthesis of kesterite thin film semiconductors

Autores
Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; Deshmukh, S. D.; Agrawal, R.; Bourdais, S.; Valdes, Matias Hernan; Arnou, P.; Mitzi, D.B.; Dale, P.
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.
Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados Unidos
Fil: Hillhouse, H. W.. University of Washington; Estados Unidos
Fil: Aazou, S.. Mohammed V University; Marruecos
Fil: Sekkat, Z.. Mohammed V University; Marruecos
Fil: Vigil Galán, O.. National Polytechnic Institute; México
Fil: Deshmukh, S. D.. Purdue University; Estados Unidos
Fil: Agrawal, R.. Purdue University; Estados Unidos
Fil: Bourdais, S.. No especifíca;
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Arnou, P.. University Of Luxembourg; Luxemburgo
Fil: Mitzi, D.B.. University of Duke; Estados Unidos
Fil: Dale, P.. University Of Luxembourg; Luxemburgo
Materia
CU2ZNSN(S,SE)4
ELECTRODEPOSITION
KESTERITE
NANOPARTICLE
SOLUTION PROCESSING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/132061

id CONICETDig_1b083a00350f6cc30fa90bb6456c6cff
oai_identifier_str oai:ri.conicet.gov.ar:11336/132061
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Solution-based synthesis of kesterite thin film semiconductorsTodorov, I. T.Hillhouse, H. W.Aazou, S.Sekkat, Z.Vigil Galán, O.Deshmukh, S. D.Agrawal, R.Bourdais, S.Valdes, Matias HernanArnou, P.Mitzi, D.B.Dale, P.CU2ZNSN(S,SE)4ELECTRODEPOSITIONKESTERITENANOPARTICLESOLUTION PROCESSINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados UnidosFil: Hillhouse, H. W.. University of Washington; Estados UnidosFil: Aazou, S.. Mohammed V University; MarruecosFil: Sekkat, Z.. Mohammed V University; MarruecosFil: Vigil Galán, O.. National Polytechnic Institute; MéxicoFil: Deshmukh, S. D.. Purdue University; Estados UnidosFil: Agrawal, R.. Purdue University; Estados UnidosFil: Bourdais, S.. No especifíca;Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Arnou, P.. University Of Luxembourg; LuxemburgoFil: Mitzi, D.B.. University of Duke; Estados UnidosFil: Dale, P.. University Of Luxembourg; LuxemburgoIOP Publishing2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132061Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-222515-7655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ab3a81info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ab3a81info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:19Zoai:ri.conicet.gov.ar:11336/132061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:19.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Solution-based synthesis of kesterite thin film semiconductors
title Solution-based synthesis of kesterite thin film semiconductors
spellingShingle Solution-based synthesis of kesterite thin film semiconductors
Todorov, I. T.
CU2ZNSN(S,SE)4
ELECTRODEPOSITION
KESTERITE
NANOPARTICLE
SOLUTION PROCESSING
title_short Solution-based synthesis of kesterite thin film semiconductors
title_full Solution-based synthesis of kesterite thin film semiconductors
title_fullStr Solution-based synthesis of kesterite thin film semiconductors
title_full_unstemmed Solution-based synthesis of kesterite thin film semiconductors
title_sort Solution-based synthesis of kesterite thin film semiconductors
dc.creator.none.fl_str_mv Todorov, I. T.
Hillhouse, H. W.
Aazou, S.
Sekkat, Z.
Vigil Galán, O.
Deshmukh, S. D.
Agrawal, R.
Bourdais, S.
Valdes, Matias Hernan
Arnou, P.
Mitzi, D.B.
Dale, P.
author Todorov, I. T.
author_facet Todorov, I. T.
Hillhouse, H. W.
Aazou, S.
Sekkat, Z.
Vigil Galán, O.
Deshmukh, S. D.
Agrawal, R.
Bourdais, S.
Valdes, Matias Hernan
Arnou, P.
Mitzi, D.B.
Dale, P.
author_role author
author2 Hillhouse, H. W.
Aazou, S.
Sekkat, Z.
Vigil Galán, O.
Deshmukh, S. D.
Agrawal, R.
Bourdais, S.
Valdes, Matias Hernan
Arnou, P.
Mitzi, D.B.
Dale, P.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv CU2ZNSN(S,SE)4
ELECTRODEPOSITION
KESTERITE
NANOPARTICLE
SOLUTION PROCESSING
topic CU2ZNSN(S,SE)4
ELECTRODEPOSITION
KESTERITE
NANOPARTICLE
SOLUTION PROCESSING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.
Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados Unidos
Fil: Hillhouse, H. W.. University of Washington; Estados Unidos
Fil: Aazou, S.. Mohammed V University; Marruecos
Fil: Sekkat, Z.. Mohammed V University; Marruecos
Fil: Vigil Galán, O.. National Polytechnic Institute; México
Fil: Deshmukh, S. D.. Purdue University; Estados Unidos
Fil: Agrawal, R.. Purdue University; Estados Unidos
Fil: Bourdais, S.. No especifíca;
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Arnou, P.. University Of Luxembourg; Luxemburgo
Fil: Mitzi, D.B.. University of Duke; Estados Unidos
Fil: Dale, P.. University Of Luxembourg; Luxemburgo
description Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.
publishDate 2020
dc.date.none.fl_str_mv 2020-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/132061
Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-22
2515-7655
CONICET Digital
CONICET
url http://hdl.handle.net/11336/132061
identifier_str_mv Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-22
2515-7655
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ab3a81
info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ab3a81
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269850995523584
score 13.13397