Solution-based synthesis of kesterite thin film semiconductors
- Autores
- Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; Deshmukh, S. D.; Agrawal, R.; Bourdais, S.; Valdes, Matias Hernan; Arnou, P.; Mitzi, D.B.; Dale, P.
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.
Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados Unidos
Fil: Hillhouse, H. W.. University of Washington; Estados Unidos
Fil: Aazou, S.. Mohammed V University; Marruecos
Fil: Sekkat, Z.. Mohammed V University; Marruecos
Fil: Vigil Galán, O.. National Polytechnic Institute; México
Fil: Deshmukh, S. D.. Purdue University; Estados Unidos
Fil: Agrawal, R.. Purdue University; Estados Unidos
Fil: Bourdais, S.. No especifíca;
Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina
Fil: Arnou, P.. University Of Luxembourg; Luxemburgo
Fil: Mitzi, D.B.. University of Duke; Estados Unidos
Fil: Dale, P.. University Of Luxembourg; Luxemburgo - Materia
-
CU2ZNSN(S,SE)4
ELECTRODEPOSITION
KESTERITE
NANOPARTICLE
SOLUTION PROCESSING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/132061
Ver los metadatos del registro completo
id |
CONICETDig_1b083a00350f6cc30fa90bb6456c6cff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/132061 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Solution-based synthesis of kesterite thin film semiconductorsTodorov, I. T.Hillhouse, H. W.Aazou, S.Sekkat, Z.Vigil Galán, O.Deshmukh, S. D.Agrawal, R.Bourdais, S.Valdes, Matias HernanArnou, P.Mitzi, D.B.Dale, P.CU2ZNSN(S,SE)4ELECTRODEPOSITIONKESTERITENANOPARTICLESOLUTION PROCESSINGhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies.Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados UnidosFil: Hillhouse, H. W.. University of Washington; Estados UnidosFil: Aazou, S.. Mohammed V University; MarruecosFil: Sekkat, Z.. Mohammed V University; MarruecosFil: Vigil Galán, O.. National Polytechnic Institute; MéxicoFil: Deshmukh, S. D.. Purdue University; Estados UnidosFil: Agrawal, R.. Purdue University; Estados UnidosFil: Bourdais, S.. No especifíca;Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; ArgentinaFil: Arnou, P.. University Of Luxembourg; LuxemburgoFil: Mitzi, D.B.. University of Duke; Estados UnidosFil: Dale, P.. University Of Luxembourg; LuxemburgoIOP Publishing2020-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/132061Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-222515-7655CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ab3a81info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ab3a81info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:04:19Zoai:ri.conicet.gov.ar:11336/132061instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:04:19.934CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Solution-based synthesis of kesterite thin film semiconductors |
title |
Solution-based synthesis of kesterite thin film semiconductors |
spellingShingle |
Solution-based synthesis of kesterite thin film semiconductors Todorov, I. T. CU2ZNSN(S,SE)4 ELECTRODEPOSITION KESTERITE NANOPARTICLE SOLUTION PROCESSING |
title_short |
Solution-based synthesis of kesterite thin film semiconductors |
title_full |
Solution-based synthesis of kesterite thin film semiconductors |
title_fullStr |
Solution-based synthesis of kesterite thin film semiconductors |
title_full_unstemmed |
Solution-based synthesis of kesterite thin film semiconductors |
title_sort |
Solution-based synthesis of kesterite thin film semiconductors |
dc.creator.none.fl_str_mv |
Todorov, I. T. Hillhouse, H. W. Aazou, S. Sekkat, Z. Vigil Galán, O. Deshmukh, S. D. Agrawal, R. Bourdais, S. Valdes, Matias Hernan Arnou, P. Mitzi, D.B. Dale, P. |
author |
Todorov, I. T. |
author_facet |
Todorov, I. T. Hillhouse, H. W. Aazou, S. Sekkat, Z. Vigil Galán, O. Deshmukh, S. D. Agrawal, R. Bourdais, S. Valdes, Matias Hernan Arnou, P. Mitzi, D.B. Dale, P. |
author_role |
author |
author2 |
Hillhouse, H. W. Aazou, S. Sekkat, Z. Vigil Galán, O. Deshmukh, S. D. Agrawal, R. Bourdais, S. Valdes, Matias Hernan Arnou, P. Mitzi, D.B. Dale, P. |
author2_role |
author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
CU2ZNSN(S,SE)4 ELECTRODEPOSITION KESTERITE NANOPARTICLE SOLUTION PROCESSING |
topic |
CU2ZNSN(S,SE)4 ELECTRODEPOSITION KESTERITE NANOPARTICLE SOLUTION PROCESSING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies. Fil: Todorov, I. T.. IBM Research. Thomas J. Watson Research Center; Estados Unidos Fil: Hillhouse, H. W.. University of Washington; Estados Unidos Fil: Aazou, S.. Mohammed V University; Marruecos Fil: Sekkat, Z.. Mohammed V University; Marruecos Fil: Vigil Galán, O.. National Polytechnic Institute; México Fil: Deshmukh, S. D.. Purdue University; Estados Unidos Fil: Agrawal, R.. Purdue University; Estados Unidos Fil: Bourdais, S.. No especifíca; Fil: Valdes, Matias Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina Fil: Arnou, P.. University Of Luxembourg; Luxemburgo Fil: Mitzi, D.B.. University of Duke; Estados Unidos Fil: Dale, P.. University Of Luxembourg; Luxemburgo |
description |
Large-scale deployment of photovoltaic modules is required to power our renewable energy future. Kesterite, Cu2ZnSn(S, Se)4, is a p-type semiconductor absorber layer with a tunable bandgap consisting of earth abundant elements, and is seen as a potential 'drop-in' replacement to Cu(In,Ga)Se2 in thin film solar cells. Currently, the record light-to-electrical power conversion efficiency (PCE) of kesterite-based devices is 12.6%, for which the absorber layer has been solution-processed. This efficiency must be increased if kesterite technology is to help power the future. Therefore two questions arise: what is the best way to synthesize the film? And how to improve the device efficiency? Here, we focus on the first question from a solution-based synthesis perspective. The main strategy is to mix all the elements together initially and coat them on a surface, followed by annealing in a reactive chalcogen atmosphere to react, grow grains and sinter the film. The main difference between the methods presented here is how easily the solvent, ligands, and anions are removed. Impurities impair the ability to achieve high performance (>∼10% PCE) in kesterite devices. Hydrazine routes offer the least impurities, but have environmental and safety concerns associated with hydrazine. Aprotic and protic based molecular inks are environmentally friendlier and less toxic, but they require the removal of organic and halogen species associated with the solvent and precursors, which is challenging but possible. Nanoparticle routes consisting of kesterite (or binary chalcogenides) particles require the removal of stabilizing ligands from their surfaces. Electrodeposited layers contain few impurities but are sometimes difficult to make compositionally uniform over large areas, and for metal deposited layers, they have to go through several solid-state reaction steps to form kesterite. Hence, each method has distinct advantages and disadvantages. We review the state-of-the art of each and provide perspective on the different strategies. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/132061 Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-22 2515-7655 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/132061 |
identifier_str_mv |
Todorov, I. T.; Hillhouse, H. W.; Aazou, S.; Sekkat, Z.; Vigil Galán, O.; et al.; Solution-based synthesis of kesterite thin film semiconductors; IOP Publishing; JPhys Energy; 2; 1; 1-2020; 1-22 2515-7655 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/2515-7655/ab3a81 info:eu-repo/semantics/altIdentifier/doi/10.1088/2515-7655/ab3a81 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269850995523584 |
score |
13.13397 |