Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides

Autores
van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; Arce, Mauricio Damián; Jimenez, Catalina E.; Howchen, Benjamin; Suarez Anzorena, María del Rosario; Lucentini, Ilaria; Escudero, Carlos; Schuck, Götz; Kochovski, Zdravko; Favaro, Marco; Starr, David E.; Reuter, Karsten; Scheurer, Christoph; Bär, Marcus; Garcia Diez, Raul
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.
Fil: van der Merwe, Marianne. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Lee, Yonghyuk. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania
Fil: Wibowo, Romualdus Enggar. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Kokumai, Tathiana. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Efimenko, Anna. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Arce, Mauricio Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Jimenez, Catalina E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Howchen, Benjamin. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Suarez Anzorena, María del Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Lucentini, Ilaria. Alba - Synchrotron Light Source.; España
Fil: Escudero, Carlos. Alba - Synchrotron Light Source.; España
Fil: Schuck, Götz. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Kochovski, Zdravko. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Favaro, Marco. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Starr, David E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Reuter, Karsten. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania
Fil: Scheurer, Christoph. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania. ET-1 Fundamental Electrochemistry; Alemania
Fil: Bär, Marcus. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania. Universitat Erlangen Nuremberg; Alemania. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy; Alemania
Fil: Garcia Diez, Raul. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Materia
IRIDIUM
ELECTROLYZER
PEM-WE
OXYGEN EVOLUTION REACTION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/267233

id CONICETDig_1a3b7bae6680d45ad4de92648de0d377
oai_identifier_str oai:ri.conicet.gov.ar:11336/267233
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxidesvan der Merwe, MarianneLee, YonghyukWibowo, Romualdus EnggarKokumai, TathianaEfimenko, AnnaArce, Mauricio DamiánJimenez, Catalina E.Howchen, BenjaminSuarez Anzorena, María del RosarioLucentini, IlariaEscudero, CarlosSchuck, GötzKochovski, ZdravkoFavaro, MarcoStarr, David E.Reuter, KarstenScheurer, ChristophBär, MarcusGarcia Diez, RaulIRIDIUMELECTROLYZERPEM-WEOXYGEN EVOLUTION REACTIONhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.Fil: van der Merwe, Marianne. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Lee, Yonghyuk. Fritz-Haber-Institut der Max-Planck-Gesellschaft; AlemaniaFil: Wibowo, Romualdus Enggar. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Kokumai, Tathiana. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Efimenko, Anna. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Arce, Mauricio Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Jimenez, Catalina E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Howchen, Benjamin. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Suarez Anzorena, María del Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Lucentini, Ilaria. Alba - Synchrotron Light Source.; EspañaFil: Escudero, Carlos. Alba - Synchrotron Light Source.; EspañaFil: Schuck, Götz. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Kochovski, Zdravko. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Favaro, Marco. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Starr, David E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaFil: Reuter, Karsten. Fritz-Haber-Institut der Max-Planck-Gesellschaft; AlemaniaFil: Scheurer, Christoph. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania. ET-1 Fundamental Electrochemistry; AlemaniaFil: Bär, Marcus. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania. Universitat Erlangen Nuremberg; Alemania. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy; AlemaniaFil: Garcia Diez, Raul. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; AlemaniaRoyal Society of Chemistry2024-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/267233van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; et al.; Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides; Royal Society of Chemistry; Energy & Environmental Science; 18; 3; 11-2024; 1214-12311754-5692CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4EE02839Binfo:eu-repo/semantics/altIdentifier/doi/10.1039/D4EE02839Binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:37Zoai:ri.conicet.gov.ar:11336/267233instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:37.457CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
title Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
spellingShingle Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
van der Merwe, Marianne
IRIDIUM
ELECTROLYZER
PEM-WE
OXYGEN EVOLUTION REACTION
title_short Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
title_full Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
title_fullStr Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
title_full_unstemmed Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
title_sort Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides
dc.creator.none.fl_str_mv van der Merwe, Marianne
Lee, Yonghyuk
Wibowo, Romualdus Enggar
Kokumai, Tathiana
Efimenko, Anna
Arce, Mauricio Damián
Jimenez, Catalina E.
Howchen, Benjamin
Suarez Anzorena, María del Rosario
Lucentini, Ilaria
Escudero, Carlos
Schuck, Götz
Kochovski, Zdravko
Favaro, Marco
Starr, David E.
Reuter, Karsten
Scheurer, Christoph
Bär, Marcus
Garcia Diez, Raul
author van der Merwe, Marianne
author_facet van der Merwe, Marianne
Lee, Yonghyuk
Wibowo, Romualdus Enggar
Kokumai, Tathiana
Efimenko, Anna
Arce, Mauricio Damián
Jimenez, Catalina E.
Howchen, Benjamin
Suarez Anzorena, María del Rosario
Lucentini, Ilaria
Escudero, Carlos
Schuck, Götz
Kochovski, Zdravko
Favaro, Marco
Starr, David E.
Reuter, Karsten
Scheurer, Christoph
Bär, Marcus
Garcia Diez, Raul
author_role author
author2 Lee, Yonghyuk
Wibowo, Romualdus Enggar
Kokumai, Tathiana
Efimenko, Anna
Arce, Mauricio Damián
Jimenez, Catalina E.
Howchen, Benjamin
Suarez Anzorena, María del Rosario
Lucentini, Ilaria
Escudero, Carlos
Schuck, Götz
Kochovski, Zdravko
Favaro, Marco
Starr, David E.
Reuter, Karsten
Scheurer, Christoph
Bär, Marcus
Garcia Diez, Raul
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv IRIDIUM
ELECTROLYZER
PEM-WE
OXYGEN EVOLUTION REACTION
topic IRIDIUM
ELECTROLYZER
PEM-WE
OXYGEN EVOLUTION REACTION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.
Fil: van der Merwe, Marianne. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Lee, Yonghyuk. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania
Fil: Wibowo, Romualdus Enggar. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Kokumai, Tathiana. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Efimenko, Anna. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Arce, Mauricio Damián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Jimenez, Catalina E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Howchen, Benjamin. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Suarez Anzorena, María del Rosario. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Investigación y Desarrollo Estratégico para la Defensa. Ministerio de Defensa. Unidad de Investigación y Desarrollo Estratégico para la Defensa; Argentina. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Lucentini, Ilaria. Alba - Synchrotron Light Source.; España
Fil: Escudero, Carlos. Alba - Synchrotron Light Source.; España
Fil: Schuck, Götz. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Kochovski, Zdravko. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Favaro, Marco. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Starr, David E.. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
Fil: Reuter, Karsten. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania
Fil: Scheurer, Christoph. Fritz-Haber-Institut der Max-Planck-Gesellschaft; Alemania. ET-1 Fundamental Electrochemistry; Alemania
Fil: Bär, Marcus. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania. Universitat Erlangen Nuremberg; Alemania. Helmholtz Institute Erlangen-Nürnberg for Renewable Energy; Alemania
Fil: Garcia Diez, Raul. Helmholtz Zentrum Berlin für Materialien und Energie GmbH; Alemania
description Understanding the oxygen evolution reaction (OER) and Ir dissolution mechanisms in amorphous, hydrous iridium oxides (am-hydr-IrOx) is hindered by the reliance on crystalline iridium oxide theoretical models to interpret its behaviour. This study presents a comprehensive investigation of hydrous iridium oxide thin films (HIROFs) as a model for am-hydr-IrOx to elucidate electronic and structural transformations under OER conditions of proton exchange membrane water electrolyzers (PEM-WE). Employing in situ and operando Ir L3-edge X-ray absorption spectroscopy supported by density functional theory calculations, we introduce a novel surface H-terminated nanosheet model that better characterizes the short-range structure of am-hydr-IrOx compared to previous crystalline models, which exhibits elongated Ir–O bond lengths compared to rutile-IrO2. This atomic model unveils the electronic and structural transformations of am-hydr-IrOx, progressing from H-terminated nanosheets to structures with multiple Ir vacancies and shorter bond-lengths at OER potentials. Notably, Ir dissolution emerges as a spontaneous, thermodynamically driven process, initiated at potentials lower than OER activation, which requires a parallel mechanistic framework describing Ir dissolution by Ir defect formation. Moreover, our results provide mechanistic insights into the activity-stability relationship of am-hydr-IrOx by systematically screening the DFT-calculated OER activity of diverse Ir and O chemical environments. This work challenges conventional perceptions of iridium dissolution and OER mechanisms in am-hydr-IrOx, providing an alternative perspective within a dual-mechanistic framework.
publishDate 2024
dc.date.none.fl_str_mv 2024-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/267233
van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; et al.; Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides; Royal Society of Chemistry; Energy & Environmental Science; 18; 3; 11-2024; 1214-1231
1754-5692
CONICET Digital
CONICET
url http://hdl.handle.net/11336/267233
identifier_str_mv van der Merwe, Marianne; Lee, Yonghyuk; Wibowo, Romualdus Enggar; Kokumai, Tathiana; Efimenko, Anna; et al.; Unravelling the mechanistic complexity of the oxygen evolution reaction and Ir dissolution in highly dimensional amorphous hydrous iridium oxides; Royal Society of Chemistry; Energy & Environmental Science; 18; 3; 11-2024; 1214-1231
1754-5692
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://xlink.rsc.org/?DOI=D4EE02839B
info:eu-repo/semantics/altIdentifier/doi/10.1039/D4EE02839B
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614434820980736
score 13.070432