Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives
- Autores
- Perez, Miriam Cristina; García, Mónica; Blustein, Guillermo
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/ eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations.
Fil: Perez, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina
Fil: García, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Tecnología de Pinturas (i); Argentina
Fil: Blustein, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina - Materia
-
Thymol
Eugenol
Guaiacol
Antifouling Paints
Low Copper Content - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11147
Ver los metadatos del registro completo
id |
CONICETDig_19213770ef3d1bd75f6ccc185a7d8701 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11147 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additivesPerez, Miriam CristinaGarcía, MónicaBlustein, GuillermoThymolEugenolGuaiacolAntifouling PaintsLow Copper Contenthttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/ eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations.Fil: Perez, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; ArgentinaFil: García, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Tecnología de Pinturas (i); ArgentinaFil: Blustein, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; ArgentinaElsevier2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11147Perez, Miriam Cristina; García, Mónica; Blustein, Guillermo; Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives; Elsevier; Marine Environmental Research; 109; 8-2015; 177-1840141-1136enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2015.07.006info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0141113615300131info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:30Zoai:ri.conicet.gov.ar:11336/11147instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:30.903CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
title |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
spellingShingle |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives Perez, Miriam Cristina Thymol Eugenol Guaiacol Antifouling Paints Low Copper Content |
title_short |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
title_full |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
title_fullStr |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
title_full_unstemmed |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
title_sort |
Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives |
dc.creator.none.fl_str_mv |
Perez, Miriam Cristina García, Mónica Blustein, Guillermo |
author |
Perez, Miriam Cristina |
author_facet |
Perez, Miriam Cristina García, Mónica Blustein, Guillermo |
author_role |
author |
author2 |
García, Mónica Blustein, Guillermo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Thymol Eugenol Guaiacol Antifouling Paints Low Copper Content |
topic |
Thymol Eugenol Guaiacol Antifouling Paints Low Copper Content |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/ eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. Fil: Perez, Miriam Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo; Argentina Fil: García, Mónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico La Plata. Centro de Investigación y Desarrollo en Tecnología de Pinturas (i); Argentina Fil: Blustein, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Centro de Investigación y Desarrollo En Tecnología de Pinturas (i); Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Agrarias y Forestales; Argentina |
description |
Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/ eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11147 Perez, Miriam Cristina; García, Mónica; Blustein, Guillermo; Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives; Elsevier; Marine Environmental Research; 109; 8-2015; 177-184 0141-1136 |
url |
http://hdl.handle.net/11336/11147 |
identifier_str_mv |
Perez, Miriam Cristina; García, Mónica; Blustein, Guillermo; Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives; Elsevier; Marine Environmental Research; 109; 8-2015; 177-184 0141-1136 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.marenvres.2015.07.006 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0141113615300131 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269034983194624 |
score |
13.13397 |