Inferencia multimodelo en ciencias sociales y ambientales
- Autores
- Garibaldi, Lucas Alejandro; Aristimuño, Francisco Javier; Oddi, Facundo José; Tiribelli, Florencia
- Año de publicación
- 2017
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Los profesionales de las ciencias sociales y ambientales debemos resolver problemas (contestar preguntas) a partir de la recolección y el análisis de datos. Habitualmente, todos enfrentamos dificultades similares; queremos tomar decisiones sobre una población (e.g., todos los árboles de una región), pero sólo contamos con información de una muestra (algunos árboles de esa región). Una herramienta fundamental en este proceso es plantear modelos de la población sobre la variable de interés (crecimiento los árboles en función de la edad y las condiciones climáticas) para luego utilizar sus predicciones en la toma de decisiones (turnos de corta de acuerdo a las condiciones climáticas). En esta ayuda didáctica discutimos cómo plantear, estimar y seleccionar modelos de una población a partir de los datos de una muestra. Dedicamos especial énfasis a proponer varios modelos (hipótesis) alternativos ante un mismo problema (e.g., distintas funciones del crecimiento arbóreo con la edad), los cuales son planteados antes de recolectar los datos e incluyen un modelo nulo (el crecimiento arbóreo no depende de la edad ni del clima). Los modelos nos indican cómo se deben recolectar los datos para un contraste válido (e.g., mediciones del crecimiento en árboles de edad distinta y en sitios con clima contrastante). Luego, el criterio de información de Akaike (AIC) permite ordenar los modelos según su parsimonia y seleccionar aquellos que mejor se ajusten a los datos (verosimilitud), y con menor número de parámetros (complejidad). A lo largo del texto introducimos las nociones básicas sobre la inferencia multimodelo y discutimos los errores más comunes en su uso. Proveemos ejemplos reales y hacemos disponibles los datos y los códigos de ejecución en el programa R, de acceso gratuito. Además de ser útil para los profesionales, esperamos que esta ayuda didáctica promueva la enseñanza de la inferencia multimodelo en los cursos de grado.
Professionals of the social and environmental sciences must solve problems (answer questions) based on data sampling and analyses. Commonly, all professionals face similar challenges: they need to take decisions on a population (e.g., all the trees of a region), but only have data from a sample (some trees of that region). A key tool in this process is to propose population models for the response variable (tree growth as a function of tree age and climatic conditions) and then use model predictions to take decisions (e.g., when to cut trees according to climatic conditions). In this paper we discuss how to propose, estimate, and select models of a population based on sampling data. We put special emphasis in proposing several alternative models (hypotheses) to solve one problem (e.g., different tree growth functions for age), which must be proposed before data sampling, including a null model (tree growth does not depend on tree age or climatic conditions). Models guide us on how data must be sampled for a valid contrast (growth measurements in trees of different age and under contrasting climates). Then, the Akaike information criterion (AIC) can be employed to sort the most parsimonious models, selecting those with the best goodness of fit (likelihood) and the lowest number of parameters (model complexity). Along the text, we introduce basic notions of multimodel inference and discuss common user mistakes. We provide real examples, and share their data and the analyses code in R, a free and open source software. In addition to be useful to professionals from different sciences, we expect our paper to promote the teaching of multimodel inference in graduate courses.
Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina
Fil: Aristimuño, Francisco Javier. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Oddi, Facundo José. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Tiribelli, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina - Materia
-
AIC
Ajuste
Akaike
Hipótesis
Inferencia
Modelo
Parsimonia
Predicción
Valor p
Verosimilitud - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68161
Ver los metadatos del registro completo
id |
CONICETDig_18f049d28983f3c4daaaf4cbaf20e89a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68161 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Inferencia multimodelo en ciencias sociales y ambientalesMultimodel inference in social and environmental sciencesGaribaldi, Lucas AlejandroAristimuño, Francisco JavierOddi, Facundo JoséTiribelli, FlorenciaAICAjusteAkaikeHipótesisInferenciaModeloParsimoniaPredicciónValor pVerosimilitudhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1https://purl.org/becyt/ford/5.9https://purl.org/becyt/ford/5Los profesionales de las ciencias sociales y ambientales debemos resolver problemas (contestar preguntas) a partir de la recolección y el análisis de datos. Habitualmente, todos enfrentamos dificultades similares; queremos tomar decisiones sobre una población (e.g., todos los árboles de una región), pero sólo contamos con información de una muestra (algunos árboles de esa región). Una herramienta fundamental en este proceso es plantear modelos de la población sobre la variable de interés (crecimiento los árboles en función de la edad y las condiciones climáticas) para luego utilizar sus predicciones en la toma de decisiones (turnos de corta de acuerdo a las condiciones climáticas). En esta ayuda didáctica discutimos cómo plantear, estimar y seleccionar modelos de una población a partir de los datos de una muestra. Dedicamos especial énfasis a proponer varios modelos (hipótesis) alternativos ante un mismo problema (e.g., distintas funciones del crecimiento arbóreo con la edad), los cuales son planteados antes de recolectar los datos e incluyen un modelo nulo (el crecimiento arbóreo no depende de la edad ni del clima). Los modelos nos indican cómo se deben recolectar los datos para un contraste válido (e.g., mediciones del crecimiento en árboles de edad distinta y en sitios con clima contrastante). Luego, el criterio de información de Akaike (AIC) permite ordenar los modelos según su parsimonia y seleccionar aquellos que mejor se ajusten a los datos (verosimilitud), y con menor número de parámetros (complejidad). A lo largo del texto introducimos las nociones básicas sobre la inferencia multimodelo y discutimos los errores más comunes en su uso. Proveemos ejemplos reales y hacemos disponibles los datos y los códigos de ejecución en el programa R, de acceso gratuito. Además de ser útil para los profesionales, esperamos que esta ayuda didáctica promueva la enseñanza de la inferencia multimodelo en los cursos de grado.Professionals of the social and environmental sciences must solve problems (answer questions) based on data sampling and analyses. Commonly, all professionals face similar challenges: they need to take decisions on a population (e.g., all the trees of a region), but only have data from a sample (some trees of that region). A key tool in this process is to propose population models for the response variable (tree growth as a function of tree age and climatic conditions) and then use model predictions to take decisions (e.g., when to cut trees according to climatic conditions). In this paper we discuss how to propose, estimate, and select models of a population based on sampling data. We put special emphasis in proposing several alternative models (hypotheses) to solve one problem (e.g., different tree growth functions for age), which must be proposed before data sampling, including a null model (tree growth does not depend on tree age or climatic conditions). Models guide us on how data must be sampled for a valid contrast (growth measurements in trees of different age and under contrasting climates). Then, the Akaike information criterion (AIC) can be employed to sort the most parsimonious models, selecting those with the best goodness of fit (likelihood) and the lowest number of parameters (model complexity). Along the text, we introduce basic notions of multimodel inference and discuss common user mistakes. We provide real examples, and share their data and the analyses code in R, a free and open source software. In addition to be useful to professionals from different sciences, we expect our paper to promote the teaching of multimodel inference in graduate courses.Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Aristimuño, Francisco Javier. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Oddi, Facundo José. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Tiribelli, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaAsociación Argentina de Ecología2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68161Garibaldi, Lucas Alejandro; Aristimuño, Francisco Javier; Oddi, Facundo José; Tiribelli, Florencia; Inferencia multimodelo en ciencias sociales y ambientales; Asociación Argentina de Ecología; Ecología Austral; 27; 3; 12-2017; 348-3631667-782X0327-5477CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/513info:eu-repo/semantics/altIdentifier/doi/10.25260/EA.17.27.3.0.513info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:28Zoai:ri.conicet.gov.ar:11336/68161instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:29.044CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Inferencia multimodelo en ciencias sociales y ambientales Multimodel inference in social and environmental sciences |
title |
Inferencia multimodelo en ciencias sociales y ambientales |
spellingShingle |
Inferencia multimodelo en ciencias sociales y ambientales Garibaldi, Lucas Alejandro AIC Ajuste Akaike Hipótesis Inferencia Modelo Parsimonia Predicción Valor p Verosimilitud |
title_short |
Inferencia multimodelo en ciencias sociales y ambientales |
title_full |
Inferencia multimodelo en ciencias sociales y ambientales |
title_fullStr |
Inferencia multimodelo en ciencias sociales y ambientales |
title_full_unstemmed |
Inferencia multimodelo en ciencias sociales y ambientales |
title_sort |
Inferencia multimodelo en ciencias sociales y ambientales |
dc.creator.none.fl_str_mv |
Garibaldi, Lucas Alejandro Aristimuño, Francisco Javier Oddi, Facundo José Tiribelli, Florencia |
author |
Garibaldi, Lucas Alejandro |
author_facet |
Garibaldi, Lucas Alejandro Aristimuño, Francisco Javier Oddi, Facundo José Tiribelli, Florencia |
author_role |
author |
author2 |
Aristimuño, Francisco Javier Oddi, Facundo José Tiribelli, Florencia |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
AIC Ajuste Akaike Hipótesis Inferencia Modelo Parsimonia Predicción Valor p Verosimilitud |
topic |
AIC Ajuste Akaike Hipótesis Inferencia Modelo Parsimonia Predicción Valor p Verosimilitud |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/5.9 https://purl.org/becyt/ford/5 |
dc.description.none.fl_txt_mv |
Los profesionales de las ciencias sociales y ambientales debemos resolver problemas (contestar preguntas) a partir de la recolección y el análisis de datos. Habitualmente, todos enfrentamos dificultades similares; queremos tomar decisiones sobre una población (e.g., todos los árboles de una región), pero sólo contamos con información de una muestra (algunos árboles de esa región). Una herramienta fundamental en este proceso es plantear modelos de la población sobre la variable de interés (crecimiento los árboles en función de la edad y las condiciones climáticas) para luego utilizar sus predicciones en la toma de decisiones (turnos de corta de acuerdo a las condiciones climáticas). En esta ayuda didáctica discutimos cómo plantear, estimar y seleccionar modelos de una población a partir de los datos de una muestra. Dedicamos especial énfasis a proponer varios modelos (hipótesis) alternativos ante un mismo problema (e.g., distintas funciones del crecimiento arbóreo con la edad), los cuales son planteados antes de recolectar los datos e incluyen un modelo nulo (el crecimiento arbóreo no depende de la edad ni del clima). Los modelos nos indican cómo se deben recolectar los datos para un contraste válido (e.g., mediciones del crecimiento en árboles de edad distinta y en sitios con clima contrastante). Luego, el criterio de información de Akaike (AIC) permite ordenar los modelos según su parsimonia y seleccionar aquellos que mejor se ajusten a los datos (verosimilitud), y con menor número de parámetros (complejidad). A lo largo del texto introducimos las nociones básicas sobre la inferencia multimodelo y discutimos los errores más comunes en su uso. Proveemos ejemplos reales y hacemos disponibles los datos y los códigos de ejecución en el programa R, de acceso gratuito. Además de ser útil para los profesionales, esperamos que esta ayuda didáctica promueva la enseñanza de la inferencia multimodelo en los cursos de grado. Professionals of the social and environmental sciences must solve problems (answer questions) based on data sampling and analyses. Commonly, all professionals face similar challenges: they need to take decisions on a population (e.g., all the trees of a region), but only have data from a sample (some trees of that region). A key tool in this process is to propose population models for the response variable (tree growth as a function of tree age and climatic conditions) and then use model predictions to take decisions (e.g., when to cut trees according to climatic conditions). In this paper we discuss how to propose, estimate, and select models of a population based on sampling data. We put special emphasis in proposing several alternative models (hypotheses) to solve one problem (e.g., different tree growth functions for age), which must be proposed before data sampling, including a null model (tree growth does not depend on tree age or climatic conditions). Models guide us on how data must be sampled for a valid contrast (growth measurements in trees of different age and under contrasting climates). Then, the Akaike information criterion (AIC) can be employed to sort the most parsimonious models, selecting those with the best goodness of fit (likelihood) and the lowest number of parameters (model complexity). Along the text, we introduce basic notions of multimodel inference and discuss common user mistakes. We provide real examples, and share their data and the analyses code in R, a free and open source software. In addition to be useful to professionals from different sciences, we expect our paper to promote the teaching of multimodel inference in graduate courses. Fil: Garibaldi, Lucas Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Universidad Nacional de Río Negro; Argentina Fil: Aristimuño, Francisco Javier. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Oddi, Facundo José. Universidad Nacional de Río Negro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Tiribelli, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentina |
description |
Los profesionales de las ciencias sociales y ambientales debemos resolver problemas (contestar preguntas) a partir de la recolección y el análisis de datos. Habitualmente, todos enfrentamos dificultades similares; queremos tomar decisiones sobre una población (e.g., todos los árboles de una región), pero sólo contamos con información de una muestra (algunos árboles de esa región). Una herramienta fundamental en este proceso es plantear modelos de la población sobre la variable de interés (crecimiento los árboles en función de la edad y las condiciones climáticas) para luego utilizar sus predicciones en la toma de decisiones (turnos de corta de acuerdo a las condiciones climáticas). En esta ayuda didáctica discutimos cómo plantear, estimar y seleccionar modelos de una población a partir de los datos de una muestra. Dedicamos especial énfasis a proponer varios modelos (hipótesis) alternativos ante un mismo problema (e.g., distintas funciones del crecimiento arbóreo con la edad), los cuales son planteados antes de recolectar los datos e incluyen un modelo nulo (el crecimiento arbóreo no depende de la edad ni del clima). Los modelos nos indican cómo se deben recolectar los datos para un contraste válido (e.g., mediciones del crecimiento en árboles de edad distinta y en sitios con clima contrastante). Luego, el criterio de información de Akaike (AIC) permite ordenar los modelos según su parsimonia y seleccionar aquellos que mejor se ajusten a los datos (verosimilitud), y con menor número de parámetros (complejidad). A lo largo del texto introducimos las nociones básicas sobre la inferencia multimodelo y discutimos los errores más comunes en su uso. Proveemos ejemplos reales y hacemos disponibles los datos y los códigos de ejecución en el programa R, de acceso gratuito. Además de ser útil para los profesionales, esperamos que esta ayuda didáctica promueva la enseñanza de la inferencia multimodelo en los cursos de grado. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68161 Garibaldi, Lucas Alejandro; Aristimuño, Francisco Javier; Oddi, Facundo José; Tiribelli, Florencia; Inferencia multimodelo en ciencias sociales y ambientales; Asociación Argentina de Ecología; Ecología Austral; 27; 3; 12-2017; 348-363 1667-782X 0327-5477 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68161 |
identifier_str_mv |
Garibaldi, Lucas Alejandro; Aristimuño, Francisco Javier; Oddi, Facundo José; Tiribelli, Florencia; Inferencia multimodelo en ciencias sociales y ambientales; Asociación Argentina de Ecología; Ecología Austral; 27; 3; 12-2017; 348-363 1667-782X 0327-5477 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/513 info:eu-repo/semantics/altIdentifier/doi/10.25260/EA.17.27.3.0.513 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Argentina de Ecología |
publisher.none.fl_str_mv |
Asociación Argentina de Ecología |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613809046552576 |
score |
13.070432 |