Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol

Autores
Granone, Luis Ignacio; Sánchez, Francisco Adrián; Hegel, Pablo Ezequiel; Pereda, Selva
Año de publicación
2023
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Yerba mate (Ilex paraguariensis) leaves, recognized for their numerous health benefits, are extensively used in Argentina, Brazil, Paraguay, and Uruguay for the preparation of traditional infusions. Nevertheless, in line with coffee or tea, there are increasing concerns regarding the elevated content of caffeine found in yerba mate beverages and its potential adverse effects on human health [1]. Various well-established industrial decaffeination methods are available, including organic solvent extraction, water extraction, and supercritical fluid extraction using carbon dioxide (scCO2, T > 304.1 K, p > 73.7 MPa) [2]. Solvent extraction typically employs dichloromethane and ethyl acetate, which are solvents subjected to strict emission and health protection laws. Water extraction is more environmentally friendly, but it exhibits a limited selectivity towards other components, resulting in the co-extraction of aroma precursor compounds alongside caffeine. In contrast, CO2 is a readily available, non-toxic, and non-flammable solvent and has a superior selectivity towards caffeine [3,4]. Therefore, extraction using scCO2 overcomes the limitations associated with both solvent and water extraction methods. However, it does require the installation and maintenance of costly high-pressure equipment [2].A more affordable alternative to scCO2 is liquid CO2 under near-critical conditions (ncCO2). This extraction method offers most of the benefits and advantages of scCO2 extraction but requires lower operating temperatures (below 304.1 K) and, more importantly, lower operating pressures (below 73.7 MPa). As a result, the equipment, maintenance, and operational costs are significantly reduced [2].In this work, we studied the decaffeination of yerba mate using a ncCO 2 Soxhlet extraction method at 283 K and 4.5 MPa. Chopped yerba mate leaves are processed in a dried form or impregnated with hydrated ethanol as a cosolvent. A maximum overall extraction yield of 2.68 wt. % is achieved when the water content in the cosolvent mixture is set at 15.0 wt. %. This resulted in a 32.8 wt. % reduction in the caffeine content of yerba mate leaves impregnated with a cosolvent-to-feed ratio of 1.0 g g-1. Interestingly, regardless of the percentage of water in the cosolvent mixture, less than 1.6 wt. % of the total content of two of the main antioxidant compounds present in yerba mate leaves, caffeic acid and chlorogenic acid, are coextracted in the process. The overall extraction yield remains close to the maximum when cosolvents with a water percentage between 4.4 and 22.5 wt. % are used. In contrast, overall extraction yields below 1.0 wt. % are obtained when cosolvents with water percentages exceeding 30 wt. % are used. In order to explain this observation, the thermodynamic phase equilibrium at 283 K and 4.5 MPa for a ternary CO2-ethanol-water mixture is modeled using the group contribution plus association equation of state (GCA-EoS). The predictions of the model reveal that when the water percentage in the cosolvent is near that of maximal extraction yield, the CO2-ethanol-water mixture forms a single liquid phase even at high CO2 contents, which is expected to favor the extraction process. Under low extraction yield conditions, where the water percentage exceeds 30 wt. %, the GCA-EoS predicts a phase split into a water-rich and a CO2-rich liquid phase at low CO2 contents. In this context, it is expected for the CO2-rich liquid phase to exhibit a rather low solvent power, and for the water-rich phase to act as a diffusion barrier, thus hindering the extraction.The use of the ncCO2 Soxhlet extraction method presented in this work serves as proof of principle for the ncCO2 decaffeination of cosolvent-impregnated yerba mate leaves with negligible coextraction of antioxidant compounds. Although the high-pressure Soxhlet extraction is not suitable as a large-scale process, the information it provides holds substantial potential for the conceptual design of scalable semi-continuous systems.
Fil: Granone, Luis Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Hegel, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
VI Iberoamerican Conference on Supercritical Fluids
Argentina
Universidad Nacional de Córdoba
Universidad Nacional del Sur
Universidade de Coimbra
Universiad de Castilla La Mancha
Universidade Federal de Santa Catarina
Materia
NEAR-CRITICAL CO2 EXTRACTION
HIGH-PRESSURE SOXHLET
YERBA MATE
DECAFFEINATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263261

id CONICETDig_18d02ff7ea9c2d3523f7917362b5e66e
oai_identifier_str oai:ri.conicet.gov.ar:11336/263261
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanolGranone, Luis IgnacioSánchez, Francisco AdriánHegel, Pablo EzequielPereda, SelvaNEAR-CRITICAL CO2 EXTRACTIONHIGH-PRESSURE SOXHLETYERBA MATEDECAFFEINATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Yerba mate (Ilex paraguariensis) leaves, recognized for their numerous health benefits, are extensively used in Argentina, Brazil, Paraguay, and Uruguay for the preparation of traditional infusions. Nevertheless, in line with coffee or tea, there are increasing concerns regarding the elevated content of caffeine found in yerba mate beverages and its potential adverse effects on human health [1]. Various well-established industrial decaffeination methods are available, including organic solvent extraction, water extraction, and supercritical fluid extraction using carbon dioxide (scCO2, T > 304.1 K, p > 73.7 MPa) [2]. Solvent extraction typically employs dichloromethane and ethyl acetate, which are solvents subjected to strict emission and health protection laws. Water extraction is more environmentally friendly, but it exhibits a limited selectivity towards other components, resulting in the co-extraction of aroma precursor compounds alongside caffeine. In contrast, CO2 is a readily available, non-toxic, and non-flammable solvent and has a superior selectivity towards caffeine [3,4]. Therefore, extraction using scCO2 overcomes the limitations associated with both solvent and water extraction methods. However, it does require the installation and maintenance of costly high-pressure equipment [2].A more affordable alternative to scCO2 is liquid CO2 under near-critical conditions (ncCO2). This extraction method offers most of the benefits and advantages of scCO2 extraction but requires lower operating temperatures (below 304.1 K) and, more importantly, lower operating pressures (below 73.7 MPa). As a result, the equipment, maintenance, and operational costs are significantly reduced [2].In this work, we studied the decaffeination of yerba mate using a ncCO 2 Soxhlet extraction method at 283 K and 4.5 MPa. Chopped yerba mate leaves are processed in a dried form or impregnated with hydrated ethanol as a cosolvent. A maximum overall extraction yield of 2.68 wt. % is achieved when the water content in the cosolvent mixture is set at 15.0 wt. %. This resulted in a 32.8 wt. % reduction in the caffeine content of yerba mate leaves impregnated with a cosolvent-to-feed ratio of 1.0 g g-1. Interestingly, regardless of the percentage of water in the cosolvent mixture, less than 1.6 wt. % of the total content of two of the main antioxidant compounds present in yerba mate leaves, caffeic acid and chlorogenic acid, are coextracted in the process. The overall extraction yield remains close to the maximum when cosolvents with a water percentage between 4.4 and 22.5 wt. % are used. In contrast, overall extraction yields below 1.0 wt. % are obtained when cosolvents with water percentages exceeding 30 wt. % are used. In order to explain this observation, the thermodynamic phase equilibrium at 283 K and 4.5 MPa for a ternary CO2-ethanol-water mixture is modeled using the group contribution plus association equation of state (GCA-EoS). The predictions of the model reveal that when the water percentage in the cosolvent is near that of maximal extraction yield, the CO2-ethanol-water mixture forms a single liquid phase even at high CO2 contents, which is expected to favor the extraction process. Under low extraction yield conditions, where the water percentage exceeds 30 wt. %, the GCA-EoS predicts a phase split into a water-rich and a CO2-rich liquid phase at low CO2 contents. In this context, it is expected for the CO2-rich liquid phase to exhibit a rather low solvent power, and for the water-rich phase to act as a diffusion barrier, thus hindering the extraction.The use of the ncCO2 Soxhlet extraction method presented in this work serves as proof of principle for the ncCO2 decaffeination of cosolvent-impregnated yerba mate leaves with negligible coextraction of antioxidant compounds. Although the high-pressure Soxhlet extraction is not suitable as a large-scale process, the information it provides holds substantial potential for the conceptual design of scalable semi-continuous systems.Fil: Granone, Luis Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Hegel, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaFil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; ArgentinaVI Iberoamerican Conference on Supercritical FluidsArgentinaUniversidad Nacional de CórdobaUniversidad Nacional del SurUniversidade de CoimbraUniversiad de Castilla La ManchaUniversidade Federal de Santa CatarinaUniversidad Nacional de Córdoba2023info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263261Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol; VI Iberoamerican Conference on Supercritical Fluids; Argentina; 2023978-950-33-1775-4CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://prosciba2023.congresos.unc.edu.ar/Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:54Zoai:ri.conicet.gov.ar:11336/263261instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:54.435CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
title Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
spellingShingle Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
Granone, Luis Ignacio
NEAR-CRITICAL CO2 EXTRACTION
HIGH-PRESSURE SOXHLET
YERBA MATE
DECAFFEINATION
title_short Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
title_full Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
title_fullStr Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
title_full_unstemmed Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
title_sort Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol
dc.creator.none.fl_str_mv Granone, Luis Ignacio
Sánchez, Francisco Adrián
Hegel, Pablo Ezequiel
Pereda, Selva
author Granone, Luis Ignacio
author_facet Granone, Luis Ignacio
Sánchez, Francisco Adrián
Hegel, Pablo Ezequiel
Pereda, Selva
author_role author
author2 Sánchez, Francisco Adrián
Hegel, Pablo Ezequiel
Pereda, Selva
author2_role author
author
author
dc.subject.none.fl_str_mv NEAR-CRITICAL CO2 EXTRACTION
HIGH-PRESSURE SOXHLET
YERBA MATE
DECAFFEINATION
topic NEAR-CRITICAL CO2 EXTRACTION
HIGH-PRESSURE SOXHLET
YERBA MATE
DECAFFEINATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Yerba mate (Ilex paraguariensis) leaves, recognized for their numerous health benefits, are extensively used in Argentina, Brazil, Paraguay, and Uruguay for the preparation of traditional infusions. Nevertheless, in line with coffee or tea, there are increasing concerns regarding the elevated content of caffeine found in yerba mate beverages and its potential adverse effects on human health [1]. Various well-established industrial decaffeination methods are available, including organic solvent extraction, water extraction, and supercritical fluid extraction using carbon dioxide (scCO2, T > 304.1 K, p > 73.7 MPa) [2]. Solvent extraction typically employs dichloromethane and ethyl acetate, which are solvents subjected to strict emission and health protection laws. Water extraction is more environmentally friendly, but it exhibits a limited selectivity towards other components, resulting in the co-extraction of aroma precursor compounds alongside caffeine. In contrast, CO2 is a readily available, non-toxic, and non-flammable solvent and has a superior selectivity towards caffeine [3,4]. Therefore, extraction using scCO2 overcomes the limitations associated with both solvent and water extraction methods. However, it does require the installation and maintenance of costly high-pressure equipment [2].A more affordable alternative to scCO2 is liquid CO2 under near-critical conditions (ncCO2). This extraction method offers most of the benefits and advantages of scCO2 extraction but requires lower operating temperatures (below 304.1 K) and, more importantly, lower operating pressures (below 73.7 MPa). As a result, the equipment, maintenance, and operational costs are significantly reduced [2].In this work, we studied the decaffeination of yerba mate using a ncCO 2 Soxhlet extraction method at 283 K and 4.5 MPa. Chopped yerba mate leaves are processed in a dried form or impregnated with hydrated ethanol as a cosolvent. A maximum overall extraction yield of 2.68 wt. % is achieved when the water content in the cosolvent mixture is set at 15.0 wt. %. This resulted in a 32.8 wt. % reduction in the caffeine content of yerba mate leaves impregnated with a cosolvent-to-feed ratio of 1.0 g g-1. Interestingly, regardless of the percentage of water in the cosolvent mixture, less than 1.6 wt. % of the total content of two of the main antioxidant compounds present in yerba mate leaves, caffeic acid and chlorogenic acid, are coextracted in the process. The overall extraction yield remains close to the maximum when cosolvents with a water percentage between 4.4 and 22.5 wt. % are used. In contrast, overall extraction yields below 1.0 wt. % are obtained when cosolvents with water percentages exceeding 30 wt. % are used. In order to explain this observation, the thermodynamic phase equilibrium at 283 K and 4.5 MPa for a ternary CO2-ethanol-water mixture is modeled using the group contribution plus association equation of state (GCA-EoS). The predictions of the model reveal that when the water percentage in the cosolvent is near that of maximal extraction yield, the CO2-ethanol-water mixture forms a single liquid phase even at high CO2 contents, which is expected to favor the extraction process. Under low extraction yield conditions, where the water percentage exceeds 30 wt. %, the GCA-EoS predicts a phase split into a water-rich and a CO2-rich liquid phase at low CO2 contents. In this context, it is expected for the CO2-rich liquid phase to exhibit a rather low solvent power, and for the water-rich phase to act as a diffusion barrier, thus hindering the extraction.The use of the ncCO2 Soxhlet extraction method presented in this work serves as proof of principle for the ncCO2 decaffeination of cosolvent-impregnated yerba mate leaves with negligible coextraction of antioxidant compounds. Although the high-pressure Soxhlet extraction is not suitable as a large-scale process, the information it provides holds substantial potential for the conceptual design of scalable semi-continuous systems.
Fil: Granone, Luis Ignacio. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina
Fil: Sánchez, Francisco Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Hegel, Pablo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
Fil: Pereda, Selva. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Química; Argentina
VI Iberoamerican Conference on Supercritical Fluids
Argentina
Universidad Nacional de Córdoba
Universidad Nacional del Sur
Universidade de Coimbra
Universiad de Castilla La Mancha
Universidade Federal de Santa Catarina
description Yerba mate (Ilex paraguariensis) leaves, recognized for their numerous health benefits, are extensively used in Argentina, Brazil, Paraguay, and Uruguay for the preparation of traditional infusions. Nevertheless, in line with coffee or tea, there are increasing concerns regarding the elevated content of caffeine found in yerba mate beverages and its potential adverse effects on human health [1]. Various well-established industrial decaffeination methods are available, including organic solvent extraction, water extraction, and supercritical fluid extraction using carbon dioxide (scCO2, T > 304.1 K, p > 73.7 MPa) [2]. Solvent extraction typically employs dichloromethane and ethyl acetate, which are solvents subjected to strict emission and health protection laws. Water extraction is more environmentally friendly, but it exhibits a limited selectivity towards other components, resulting in the co-extraction of aroma precursor compounds alongside caffeine. In contrast, CO2 is a readily available, non-toxic, and non-flammable solvent and has a superior selectivity towards caffeine [3,4]. Therefore, extraction using scCO2 overcomes the limitations associated with both solvent and water extraction methods. However, it does require the installation and maintenance of costly high-pressure equipment [2].A more affordable alternative to scCO2 is liquid CO2 under near-critical conditions (ncCO2). This extraction method offers most of the benefits and advantages of scCO2 extraction but requires lower operating temperatures (below 304.1 K) and, more importantly, lower operating pressures (below 73.7 MPa). As a result, the equipment, maintenance, and operational costs are significantly reduced [2].In this work, we studied the decaffeination of yerba mate using a ncCO 2 Soxhlet extraction method at 283 K and 4.5 MPa. Chopped yerba mate leaves are processed in a dried form or impregnated with hydrated ethanol as a cosolvent. A maximum overall extraction yield of 2.68 wt. % is achieved when the water content in the cosolvent mixture is set at 15.0 wt. %. This resulted in a 32.8 wt. % reduction in the caffeine content of yerba mate leaves impregnated with a cosolvent-to-feed ratio of 1.0 g g-1. Interestingly, regardless of the percentage of water in the cosolvent mixture, less than 1.6 wt. % of the total content of two of the main antioxidant compounds present in yerba mate leaves, caffeic acid and chlorogenic acid, are coextracted in the process. The overall extraction yield remains close to the maximum when cosolvents with a water percentage between 4.4 and 22.5 wt. % are used. In contrast, overall extraction yields below 1.0 wt. % are obtained when cosolvents with water percentages exceeding 30 wt. % are used. In order to explain this observation, the thermodynamic phase equilibrium at 283 K and 4.5 MPa for a ternary CO2-ethanol-water mixture is modeled using the group contribution plus association equation of state (GCA-EoS). The predictions of the model reveal that when the water percentage in the cosolvent is near that of maximal extraction yield, the CO2-ethanol-water mixture forms a single liquid phase even at high CO2 contents, which is expected to favor the extraction process. Under low extraction yield conditions, where the water percentage exceeds 30 wt. %, the GCA-EoS predicts a phase split into a water-rich and a CO2-rich liquid phase at low CO2 contents. In this context, it is expected for the CO2-rich liquid phase to exhibit a rather low solvent power, and for the water-rich phase to act as a diffusion barrier, thus hindering the extraction.The use of the ncCO2 Soxhlet extraction method presented in this work serves as proof of principle for the ncCO2 decaffeination of cosolvent-impregnated yerba mate leaves with negligible coextraction of antioxidant compounds. Although the high-pressure Soxhlet extraction is not suitable as a large-scale process, the information it provides holds substantial potential for the conceptual design of scalable semi-continuous systems.
publishDate 2023
dc.date.none.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Conferencia
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263261
Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol; VI Iberoamerican Conference on Supercritical Fluids; Argentina; 2023
978-950-33-1775-4
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263261
identifier_str_mv Cross-current liquid-liquid extraction of yerba mate (Ilex Paraguariensis) using near-critical CO2 + hydrated ethanol; VI Iberoamerican Conference on Supercritical Fluids; Argentina; 2023
978-950-33-1775-4
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://prosciba2023.congresos.unc.edu.ar/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Internacional
dc.publisher.none.fl_str_mv Universidad Nacional de Córdoba
publisher.none.fl_str_mv Universidad Nacional de Córdoba
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980615310278656
score 12.993085