Mechanical and thermal shock behavior of refractory materials for glass feeders

Autores
Rendtorff Birrer, Nicolás Maximiliano; Aglietti, Esteban Fausto
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Refractory materials of the Al2O3–SiO2–ZrO2 system are widely used in glass industry in forehearth, distributors, feeders, and as expendable materials as they are known to have good thermal shock properties. They are commonly subject to thermal stress during installation. Once installed, the service life is then determined mainly by the corrosion characteristics. In this work three refractories were studied to observe and correlate mechanical properties with thermal shock behavior. The materials and their principal crystalline phases are: AM (Alumina–Mullite 35), Am (Alumina–Mullite 10), and AZ (Alumina–Zircon). All the materials have similar open porosity and pore size distribution. The mechanical characterization comprises: fracture toughness (KIC), fracture initiation energy (NBT) and work of fracture (WOF). The dynamic elastic modulus E of the composites was measured by the excitation technique. The water quenching method was used for the experimental evaluation of the thermal shock resistance (TSR). Thermal cycles with different quenching temperature gradients T were applied and a cyclic water quenching was used for the thermal fatigue resistance (TFR) assessment. The TSR behavior was evaluated by measuring the decrease in E/E0 ratio where E0 and E are the dynamic elastic modulus before and after one quenching, respectively. The strength (modulus of rupture, MOR) of materials before and after the TSR test was also measured. The AM material showed the highest E, f (MOR) and KIC values. The elastic modulus remained relatively high (near 80%) up to a T of 500 ◦C for the three samples. AM showed a higher reduction of E and MOR than Am and AZ. Considering the retained MOR and E with T, Am and AZ have a similar behavior. Theoretical TS parameters (R, R and RST) were calculated for the refractories. The parameters considering crack initiation (R = theoretical Tc) are very similar but their value differs considerably to those Tc observed experimentally. This fact can be explained if we consider that the microstructure of refractory materials initially has defects and microcracks. The R parameters are the same for all materials. For our materials the RST parameter reflected the TSR damage. The best TSR and TFR of AZ followed by Am are due to the microcracks size and their distribution in the microstructure of the materials. In AM refractory the high content and great grain size of Mullite produce the appearance of greater cracks than in the other materials. The usage of these materials in glass service indicates that the AM material has a low TSR resistance.
Fil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Aglietti, Esteban Fausto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Materia
Refractories
Fracture properties
Thermal shock
Alumina
Mullite
Zircon
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/154205

id CONICETDig_184e57555a86ffd47cc2de81017bd482
oai_identifier_str oai:ri.conicet.gov.ar:11336/154205
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mechanical and thermal shock behavior of refractory materials for glass feedersRendtorff Birrer, Nicolás MaximilianoAglietti, Esteban FaustoRefractoriesFracture propertiesThermal shockAluminaMulliteZirconhttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Refractory materials of the Al2O3–SiO2–ZrO2 system are widely used in glass industry in forehearth, distributors, feeders, and as expendable materials as they are known to have good thermal shock properties. They are commonly subject to thermal stress during installation. Once installed, the service life is then determined mainly by the corrosion characteristics. In this work three refractories were studied to observe and correlate mechanical properties with thermal shock behavior. The materials and their principal crystalline phases are: AM (Alumina–Mullite 35), Am (Alumina–Mullite 10), and AZ (Alumina–Zircon). All the materials have similar open porosity and pore size distribution. The mechanical characterization comprises: fracture toughness (KIC), fracture initiation energy (NBT) and work of fracture (WOF). The dynamic elastic modulus E of the composites was measured by the excitation technique. The water quenching method was used for the experimental evaluation of the thermal shock resistance (TSR). Thermal cycles with different quenching temperature gradients T were applied and a cyclic water quenching was used for the thermal fatigue resistance (TFR) assessment. The TSR behavior was evaluated by measuring the decrease in E/E0 ratio where E0 and E are the dynamic elastic modulus before and after one quenching, respectively. The strength (modulus of rupture, MOR) of materials before and after the TSR test was also measured. The AM material showed the highest E, f (MOR) and KIC values. The elastic modulus remained relatively high (near 80%) up to a T of 500 ◦C for the three samples. AM showed a higher reduction of E and MOR than Am and AZ. Considering the retained MOR and E with T, Am and AZ have a similar behavior. Theoretical TS parameters (R, R and RST) were calculated for the refractories. The parameters considering crack initiation (R = theoretical Tc) are very similar but their value differs considerably to those Tc observed experimentally. This fact can be explained if we consider that the microstructure of refractory materials initially has defects and microcracks. The R parameters are the same for all materials. For our materials the RST parameter reflected the TSR damage. The best TSR and TFR of AZ followed by Am are due to the microcracks size and their distribution in the microstructure of the materials. In AM refractory the high content and great grain size of Mullite produce the appearance of greater cracks than in the other materials. The usage of these materials in glass service indicates that the AM material has a low TSR resistance.Fil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaFil: Aglietti, Esteban Fausto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; ArgentinaElsevier Science SA2010-06-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/154205Rendtorff Birrer, Nicolás Maximiliano; Aglietti, Esteban Fausto; Mechanical and thermal shock behavior of refractory materials for glass feeders; Elsevier Science SA; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 527; 16-17; 15-6-2010; 3840-38470921-5093CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2010.02.053info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0921509310002182?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:38:10Zoai:ri.conicet.gov.ar:11336/154205instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:38:10.7CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mechanical and thermal shock behavior of refractory materials for glass feeders
title Mechanical and thermal shock behavior of refractory materials for glass feeders
spellingShingle Mechanical and thermal shock behavior of refractory materials for glass feeders
Rendtorff Birrer, Nicolás Maximiliano
Refractories
Fracture properties
Thermal shock
Alumina
Mullite
Zircon
title_short Mechanical and thermal shock behavior of refractory materials for glass feeders
title_full Mechanical and thermal shock behavior of refractory materials for glass feeders
title_fullStr Mechanical and thermal shock behavior of refractory materials for glass feeders
title_full_unstemmed Mechanical and thermal shock behavior of refractory materials for glass feeders
title_sort Mechanical and thermal shock behavior of refractory materials for glass feeders
dc.creator.none.fl_str_mv Rendtorff Birrer, Nicolás Maximiliano
Aglietti, Esteban Fausto
author Rendtorff Birrer, Nicolás Maximiliano
author_facet Rendtorff Birrer, Nicolás Maximiliano
Aglietti, Esteban Fausto
author_role author
author2 Aglietti, Esteban Fausto
author2_role author
dc.subject.none.fl_str_mv Refractories
Fracture properties
Thermal shock
Alumina
Mullite
Zircon
topic Refractories
Fracture properties
Thermal shock
Alumina
Mullite
Zircon
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Refractory materials of the Al2O3–SiO2–ZrO2 system are widely used in glass industry in forehearth, distributors, feeders, and as expendable materials as they are known to have good thermal shock properties. They are commonly subject to thermal stress during installation. Once installed, the service life is then determined mainly by the corrosion characteristics. In this work three refractories were studied to observe and correlate mechanical properties with thermal shock behavior. The materials and their principal crystalline phases are: AM (Alumina–Mullite 35), Am (Alumina–Mullite 10), and AZ (Alumina–Zircon). All the materials have similar open porosity and pore size distribution. The mechanical characterization comprises: fracture toughness (KIC), fracture initiation energy (NBT) and work of fracture (WOF). The dynamic elastic modulus E of the composites was measured by the excitation technique. The water quenching method was used for the experimental evaluation of the thermal shock resistance (TSR). Thermal cycles with different quenching temperature gradients T were applied and a cyclic water quenching was used for the thermal fatigue resistance (TFR) assessment. The TSR behavior was evaluated by measuring the decrease in E/E0 ratio where E0 and E are the dynamic elastic modulus before and after one quenching, respectively. The strength (modulus of rupture, MOR) of materials before and after the TSR test was also measured. The AM material showed the highest E, f (MOR) and KIC values. The elastic modulus remained relatively high (near 80%) up to a T of 500 ◦C for the three samples. AM showed a higher reduction of E and MOR than Am and AZ. Considering the retained MOR and E with T, Am and AZ have a similar behavior. Theoretical TS parameters (R, R and RST) were calculated for the refractories. The parameters considering crack initiation (R = theoretical Tc) are very similar but their value differs considerably to those Tc observed experimentally. This fact can be explained if we consider that the microstructure of refractory materials initially has defects and microcracks. The R parameters are the same for all materials. For our materials the RST parameter reflected the TSR damage. The best TSR and TFR of AZ followed by Am are due to the microcracks size and their distribution in the microstructure of the materials. In AM refractory the high content and great grain size of Mullite produce the appearance of greater cracks than in the other materials. The usage of these materials in glass service indicates that the AM material has a low TSR resistance.
Fil: Rendtorff Birrer, Nicolás Maximiliano. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
Fil: Aglietti, Esteban Fausto. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Centro de Tecnología de Recursos Minerales y Cerámica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Tecnología de Recursos Minerales y Cerámica; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Exactas; Argentina
description Refractory materials of the Al2O3–SiO2–ZrO2 system are widely used in glass industry in forehearth, distributors, feeders, and as expendable materials as they are known to have good thermal shock properties. They are commonly subject to thermal stress during installation. Once installed, the service life is then determined mainly by the corrosion characteristics. In this work three refractories were studied to observe and correlate mechanical properties with thermal shock behavior. The materials and their principal crystalline phases are: AM (Alumina–Mullite 35), Am (Alumina–Mullite 10), and AZ (Alumina–Zircon). All the materials have similar open porosity and pore size distribution. The mechanical characterization comprises: fracture toughness (KIC), fracture initiation energy (NBT) and work of fracture (WOF). The dynamic elastic modulus E of the composites was measured by the excitation technique. The water quenching method was used for the experimental evaluation of the thermal shock resistance (TSR). Thermal cycles with different quenching temperature gradients T were applied and a cyclic water quenching was used for the thermal fatigue resistance (TFR) assessment. The TSR behavior was evaluated by measuring the decrease in E/E0 ratio where E0 and E are the dynamic elastic modulus before and after one quenching, respectively. The strength (modulus of rupture, MOR) of materials before and after the TSR test was also measured. The AM material showed the highest E, f (MOR) and KIC values. The elastic modulus remained relatively high (near 80%) up to a T of 500 ◦C for the three samples. AM showed a higher reduction of E and MOR than Am and AZ. Considering the retained MOR and E with T, Am and AZ have a similar behavior. Theoretical TS parameters (R, R and RST) were calculated for the refractories. The parameters considering crack initiation (R = theoretical Tc) are very similar but their value differs considerably to those Tc observed experimentally. This fact can be explained if we consider that the microstructure of refractory materials initially has defects and microcracks. The R parameters are the same for all materials. For our materials the RST parameter reflected the TSR damage. The best TSR and TFR of AZ followed by Am are due to the microcracks size and their distribution in the microstructure of the materials. In AM refractory the high content and great grain size of Mullite produce the appearance of greater cracks than in the other materials. The usage of these materials in glass service indicates that the AM material has a low TSR resistance.
publishDate 2010
dc.date.none.fl_str_mv 2010-06-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/154205
Rendtorff Birrer, Nicolás Maximiliano; Aglietti, Esteban Fausto; Mechanical and thermal shock behavior of refractory materials for glass feeders; Elsevier Science SA; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 527; 16-17; 15-6-2010; 3840-3847
0921-5093
CONICET Digital
CONICET
url http://hdl.handle.net/11336/154205
identifier_str_mv Rendtorff Birrer, Nicolás Maximiliano; Aglietti, Esteban Fausto; Mechanical and thermal shock behavior of refractory materials for glass feeders; Elsevier Science SA; Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing; 527; 16-17; 15-6-2010; 3840-3847
0921-5093
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.msea.2010.02.053
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0921509310002182?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606739633569792
score 13.001348