Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion

Autores
Calzetta, Esteban Adolfo; Verdaguer, Enric
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Macroscopic quantum tunnelling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunnelling effect of the isolated system and the effect of the environment is described by an equation that is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunnelling time the master equation can be approximated by a Kramers-like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunnelling. © 2006 IOP Publishing Ltd.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Verdaguer, Enric. Universidad de Barcelona; España
Materia
Quantum Open Systems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/71853

id CONICETDig_15135979a43da5c64c65bf755322fcfd
oai_identifier_str oai:ri.conicet.gov.ar:11336/71853
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusionCalzetta, Esteban AdolfoVerdaguer, EnricQuantum Open Systemshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Macroscopic quantum tunnelling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunnelling effect of the isolated system and the effect of the environment is described by an equation that is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunnelling time the master equation can be approximated by a Kramers-like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunnelling. © 2006 IOP Publishing Ltd.Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Verdaguer, Enric. Universidad de Barcelona; EspañaIOP Publishing2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/71853Calzetta, Esteban Adolfo; Verdaguer, Enric; Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion; IOP Publishing; Journal of Physics A: Mathematical and General; 39; 30; 12-2006; 9503-95321361-644CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/39/30/008info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:51:49Zoai:ri.conicet.gov.ar:11336/71853instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:51:49.449CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
title Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
spellingShingle Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
Calzetta, Esteban Adolfo
Quantum Open Systems
title_short Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
title_full Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
title_fullStr Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
title_full_unstemmed Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
title_sort Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion
dc.creator.none.fl_str_mv Calzetta, Esteban Adolfo
Verdaguer, Enric
author Calzetta, Esteban Adolfo
author_facet Calzetta, Esteban Adolfo
Verdaguer, Enric
author_role author
author2 Verdaguer, Enric
author2_role author
dc.subject.none.fl_str_mv Quantum Open Systems
topic Quantum Open Systems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Macroscopic quantum tunnelling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunnelling effect of the isolated system and the effect of the environment is described by an equation that is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunnelling time the master equation can be approximated by a Kramers-like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunnelling. © 2006 IOP Publishing Ltd.
Fil: Calzetta, Esteban Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Verdaguer, Enric. Universidad de Barcelona; España
description Macroscopic quantum tunnelling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunnelling effect of the isolated system and the effect of the environment is described by an equation that is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunnelling time the master equation can be approximated by a Kramers-like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunnelling. © 2006 IOP Publishing Ltd.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/71853
Calzetta, Esteban Adolfo; Verdaguer, Enric; Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion; IOP Publishing; Journal of Physics A: Mathematical and General; 39; 30; 12-2006; 9503-9532
1361-644
CONICET Digital
CONICET
url http://hdl.handle.net/11336/71853
identifier_str_mv Calzetta, Esteban Adolfo; Verdaguer, Enric; Real-time approach to tunnelling in open quantum systems: Decoherence and anomalous diffusion; IOP Publishing; Journal of Physics A: Mathematical and General; 39; 30; 12-2006; 9503-9532
1361-644
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/0305-4470/39/30/008
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613591345397760
score 13.070432