KPZ models: Height gradient fluctuations and the tilt method
- Autores
- Torres, M. F.; Buceta, Ruben Carlos
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- When an interface model belonging to the KPZ universality class is tilted with average slope m, its average velocity increases in Λ/2 m2. The coefficient Λ can only be related to the non-linear coefficient λ from the KPZ equation if the mean square of the height gradient also increases in bm2 when the interface is tilted. For the continuous KPZ equation, b = 1 and the relation Λ = λ is achieved. In this work, we study the local fluctuations of the height gradient through an analysis of the values of b. We show that, for one-dimensional discrete KPZ models, 1-b ∼ sγb, where s is the discretization step chosen to calculate the height gradient. The exponent γb that we measure matches the power-law exponent associated with the finite-size corrections of the interface average velocity, i.e. γb = 2(ζ- 1), where ζ is the global roughness exponent. Lastly, we show how, for restricted (unrestricted) growth models, the value of b goes to 1 from below (above) as s increases.
Fil: Torres, M. F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina - Materia
-
CLASSICAL MONTE CARLO SIMULATIONS
GROWTH PROCESSES
INTERFACES IN RANDOM MEDIA
KINETIC ROUGHENING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182286
Ver los metadatos del registro completo
id |
CONICETDig_17d84a38f520f359bc8e002f712b71ba |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182286 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
KPZ models: Height gradient fluctuations and the tilt methodTorres, M. F.Buceta, Ruben CarlosCLASSICAL MONTE CARLO SIMULATIONSGROWTH PROCESSESINTERFACES IN RANDOM MEDIAKINETIC ROUGHENINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1When an interface model belonging to the KPZ universality class is tilted with average slope m, its average velocity increases in Λ/2 m2. The coefficient Λ can only be related to the non-linear coefficient λ from the KPZ equation if the mean square of the height gradient also increases in bm2 when the interface is tilted. For the continuous KPZ equation, b = 1 and the relation Λ = λ is achieved. In this work, we study the local fluctuations of the height gradient through an analysis of the values of b. We show that, for one-dimensional discrete KPZ models, 1-b ∼ sγb, where s is the discretization step chosen to calculate the height gradient. The exponent γb that we measure matches the power-law exponent associated with the finite-size corrections of the interface average velocity, i.e. γb = 2(ζ- 1), where ζ is the global roughness exponent. Lastly, we show how, for restricted (unrestricted) growth models, the value of b goes to 1 from below (above) as s increases.Fil: Torres, M. F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaIOP Publishing2021-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182286Torres, M. F.; Buceta, Ruben Carlos; KPZ models: Height gradient fluctuations and the tilt method; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2021; 9; 9-2021; 1-91742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/ac1f10info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/ac1f10info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.09652info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:27:10Zoai:ri.conicet.gov.ar:11336/182286instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:27:10.35CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
KPZ models: Height gradient fluctuations and the tilt method |
title |
KPZ models: Height gradient fluctuations and the tilt method |
spellingShingle |
KPZ models: Height gradient fluctuations and the tilt method Torres, M. F. CLASSICAL MONTE CARLO SIMULATIONS GROWTH PROCESSES INTERFACES IN RANDOM MEDIA KINETIC ROUGHENING |
title_short |
KPZ models: Height gradient fluctuations and the tilt method |
title_full |
KPZ models: Height gradient fluctuations and the tilt method |
title_fullStr |
KPZ models: Height gradient fluctuations and the tilt method |
title_full_unstemmed |
KPZ models: Height gradient fluctuations and the tilt method |
title_sort |
KPZ models: Height gradient fluctuations and the tilt method |
dc.creator.none.fl_str_mv |
Torres, M. F. Buceta, Ruben Carlos |
author |
Torres, M. F. |
author_facet |
Torres, M. F. Buceta, Ruben Carlos |
author_role |
author |
author2 |
Buceta, Ruben Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
CLASSICAL MONTE CARLO SIMULATIONS GROWTH PROCESSES INTERFACES IN RANDOM MEDIA KINETIC ROUGHENING |
topic |
CLASSICAL MONTE CARLO SIMULATIONS GROWTH PROCESSES INTERFACES IN RANDOM MEDIA KINETIC ROUGHENING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
When an interface model belonging to the KPZ universality class is tilted with average slope m, its average velocity increases in Λ/2 m2. The coefficient Λ can only be related to the non-linear coefficient λ from the KPZ equation if the mean square of the height gradient also increases in bm2 when the interface is tilted. For the continuous KPZ equation, b = 1 and the relation Λ = λ is achieved. In this work, we study the local fluctuations of the height gradient through an analysis of the values of b. We show that, for one-dimensional discrete KPZ models, 1-b ∼ sγb, where s is the discretization step chosen to calculate the height gradient. The exponent γb that we measure matches the power-law exponent associated with the finite-size corrections of the interface average velocity, i.e. γb = 2(ζ- 1), where ζ is the global roughness exponent. Lastly, we show how, for restricted (unrestricted) growth models, the value of b goes to 1 from below (above) as s increases. Fil: Torres, M. F.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Buceta, Ruben Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina |
description |
When an interface model belonging to the KPZ universality class is tilted with average slope m, its average velocity increases in Λ/2 m2. The coefficient Λ can only be related to the non-linear coefficient λ from the KPZ equation if the mean square of the height gradient also increases in bm2 when the interface is tilted. For the continuous KPZ equation, b = 1 and the relation Λ = λ is achieved. In this work, we study the local fluctuations of the height gradient through an analysis of the values of b. We show that, for one-dimensional discrete KPZ models, 1-b ∼ sγb, where s is the discretization step chosen to calculate the height gradient. The exponent γb that we measure matches the power-law exponent associated with the finite-size corrections of the interface average velocity, i.e. γb = 2(ζ- 1), where ζ is the global roughness exponent. Lastly, we show how, for restricted (unrestricted) growth models, the value of b goes to 1 from below (above) as s increases. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182286 Torres, M. F.; Buceta, Ruben Carlos; KPZ models: Height gradient fluctuations and the tilt method; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2021; 9; 9-2021; 1-9 1742-5468 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182286 |
identifier_str_mv |
Torres, M. F.; Buceta, Ruben Carlos; KPZ models: Height gradient fluctuations and the tilt method; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2021; 9; 9-2021; 1-9 1742-5468 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/ac1f10 info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/ac1f10 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1711.09652 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614273764950016 |
score |
13.070432 |