Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling

Autores
Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; Abhervé, Ronan; Tapia, Felipe; Villela, Daniela; Butikofer, Pol
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.
Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; Chile
Fil: Leray, Sarah. Pontificia Universidad Católica de Chile; Chile
Fil: Roques, Clément. Universite de Neuchatel; Suiza
Fil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; Chile
Fil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile
Fil: Abhervé, Ronan. Universite de Neuchatel; Suiza
Fil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
Fil: Villela, Daniela. Servicio Nacional de Geología y Minería; Chile
Fil: Butikofer, Pol. Universidad de Concepción; Chile
Materia
HYDROGEOLOGY
ANDES
AQUIFERS
CENTRAL CHILE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/270829

id CONICETDig_17d6c13d2840d7755819ac002587d1e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/270829
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical ModelingMarti, EtienneLeray, SarahRoques, ClémentYáñez, GonzaloPoblete, FernandoAbhervé, RonanTapia, FelipeVillela, DanielaButikofer, PolHYDROGEOLOGYANDESAQUIFERSCENTRAL CHILEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; ChileFil: Leray, Sarah. Pontificia Universidad Católica de Chile; ChileFil: Roques, Clément. Universite de Neuchatel; SuizaFil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; ChileFil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; ChileFil: Abhervé, Ronan. Universite de Neuchatel; SuizaFil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; ArgentinaFil: Villela, Daniela. Servicio Nacional de Geología y Minería; ChileFil: Butikofer, Pol. Universidad de Concepción; ChileAmerican Geophysical Union2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270829Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-250043-1397CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024WR037474info:eu-repo/semantics/altIdentifier/doi/10.1029/2024WR037474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:19Zoai:ri.conicet.gov.ar:11336/270829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:20.011CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
title Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
spellingShingle Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
Marti, Etienne
HYDROGEOLOGY
ANDES
AQUIFERS
CENTRAL CHILE
title_short Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
title_full Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
title_fullStr Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
title_full_unstemmed Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
title_sort Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
dc.creator.none.fl_str_mv Marti, Etienne
Leray, Sarah
Roques, Clément
Yáñez, Gonzalo
Poblete, Fernando
Abhervé, Ronan
Tapia, Felipe
Villela, Daniela
Butikofer, Pol
author Marti, Etienne
author_facet Marti, Etienne
Leray, Sarah
Roques, Clément
Yáñez, Gonzalo
Poblete, Fernando
Abhervé, Ronan
Tapia, Felipe
Villela, Daniela
Butikofer, Pol
author_role author
author2 Leray, Sarah
Roques, Clément
Yáñez, Gonzalo
Poblete, Fernando
Abhervé, Ronan
Tapia, Felipe
Villela, Daniela
Butikofer, Pol
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv HYDROGEOLOGY
ANDES
AQUIFERS
CENTRAL CHILE
topic HYDROGEOLOGY
ANDES
AQUIFERS
CENTRAL CHILE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.
Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; Chile
Fil: Leray, Sarah. Pontificia Universidad Católica de Chile; Chile
Fil: Roques, Clément. Universite de Neuchatel; Suiza
Fil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; Chile
Fil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile
Fil: Abhervé, Ronan. Universite de Neuchatel; Suiza
Fil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
Fil: Villela, Daniela. Servicio Nacional de Geología y Minería; Chile
Fil: Butikofer, Pol. Universidad de Concepción; Chile
description Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.
publishDate 2025
dc.date.none.fl_str_mv 2025-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/270829
Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-25
0043-1397
CONICET Digital
CONICET
url http://hdl.handle.net/11336/270829
identifier_str_mv Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-25
0043-1397
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024WR037474
info:eu-repo/semantics/altIdentifier/doi/10.1029/2024WR037474
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Geophysical Union
publisher.none.fl_str_mv American Geophysical Union
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613210886373376
score 13.070432