Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling
- Autores
- Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; Abhervé, Ronan; Tapia, Felipe; Villela, Daniela; Butikofer, Pol
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.
Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; Chile
Fil: Leray, Sarah. Pontificia Universidad Católica de Chile; Chile
Fil: Roques, Clément. Universite de Neuchatel; Suiza
Fil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; Chile
Fil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile
Fil: Abhervé, Ronan. Universite de Neuchatel; Suiza
Fil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina
Fil: Villela, Daniela. Servicio Nacional de Geología y Minería; Chile
Fil: Butikofer, Pol. Universidad de Concepción; Chile - Materia
-
HYDROGEOLOGY
ANDES
AQUIFERS
CENTRAL CHILE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/270829
Ver los metadatos del registro completo
id |
CONICETDig_17d6c13d2840d7755819ac002587d1e7 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/270829 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical ModelingMarti, EtienneLeray, SarahRoques, ClémentYáñez, GonzaloPoblete, FernandoAbhervé, RonanTapia, FelipeVillela, DanielaButikofer, PolHYDROGEOLOGYANDESAQUIFERSCENTRAL CHILEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating.Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; ChileFil: Leray, Sarah. Pontificia Universidad Católica de Chile; ChileFil: Roques, Clément. Universite de Neuchatel; SuizaFil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; ChileFil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; ChileFil: Abhervé, Ronan. Universite de Neuchatel; SuizaFil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; ArgentinaFil: Villela, Daniela. Servicio Nacional de Geología y Minería; ChileFil: Butikofer, Pol. Universidad de Concepción; ChileAmerican Geophysical Union2025-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/270829Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-250043-1397CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024WR037474info:eu-repo/semantics/altIdentifier/doi/10.1029/2024WR037474info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:19Zoai:ri.conicet.gov.ar:11336/270829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:20.011CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
title |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
spellingShingle |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling Marti, Etienne HYDROGEOLOGY ANDES AQUIFERS CENTRAL CHILE |
title_short |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
title_full |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
title_fullStr |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
title_full_unstemmed |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
title_sort |
Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling |
dc.creator.none.fl_str_mv |
Marti, Etienne Leray, Sarah Roques, Clément Yáñez, Gonzalo Poblete, Fernando Abhervé, Ronan Tapia, Felipe Villela, Daniela Butikofer, Pol |
author |
Marti, Etienne |
author_facet |
Marti, Etienne Leray, Sarah Roques, Clément Yáñez, Gonzalo Poblete, Fernando Abhervé, Ronan Tapia, Felipe Villela, Daniela Butikofer, Pol |
author_role |
author |
author2 |
Leray, Sarah Roques, Clément Yáñez, Gonzalo Poblete, Fernando Abhervé, Ronan Tapia, Felipe Villela, Daniela Butikofer, Pol |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
HYDROGEOLOGY ANDES AQUIFERS CENTRAL CHILE |
topic |
HYDROGEOLOGY ANDES AQUIFERS CENTRAL CHILE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating. Fil: Marti, Etienne. Pontificia Universidad Católica de Chile; Chile Fil: Leray, Sarah. Pontificia Universidad Católica de Chile; Chile Fil: Roques, Clément. Universite de Neuchatel; Suiza Fil: Yáñez, Gonzalo. Pontificia Universidad Católica de Chile; Chile Fil: Poblete, Fernando. Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología; Chile Fil: Abhervé, Ronan. Universite de Neuchatel; Suiza Fil: Tapia, Felipe. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Geología; Argentina Fil: Villela, Daniela. Servicio Nacional de Geología y Minería; Chile Fil: Butikofer, Pol. Universidad de Concepción; Chile |
description |
Mountains play a critical role in the hydrological cycle by transferring heavy precipitation to lowland aquifers. However, their complexity and remoteness limit our understanding of groundwater flow, particularly the influence of faults. To fill the gap, semi-idealized 3D numerical models calibrated using the mountain river network and the lowland piezometric gradient were developed. The impact of faults on groundwater flow was explored by varying their hydraulic conductivity, position, orientation, and length. The metrics evaluated were flow partitioning, seepage area, flow path lengths, and residence times. It was found that the hydraulic conductivity contrast between a fault and the pervasive rock controls recharge partitioning as much as the overall transmissivity of the pervasive rock. Regional conductive faults parallel to the orogen promote mountain-block recharge over surface flow, as significantly as thick systems do, and vice versa. Local-scale faults can exert as much influence as regional faults when crossing the catchment outlet, highlighting the importance of local heterogeneity in regional flow dynamics. Intercatchment flow is primarily governed by lithology and topography and is modulated by the fault position relative to major topographic features. Faults influence seepage areas within a multi-kilometer distance in characteristic patterns useful for segregating their effective role. By lowering the water table, conductive faults systematically reduce the seepage areas. Meanwhile, barriers decrease seepage areas downstream of their trace and increase them upstream, without affecting the extent of seepage. Finally, the distributions of flow path lengths and residence times are uncorrelated, highlighting the importance of numerical modeling for groundwater dating. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/270829 Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-25 0043-1397 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/270829 |
identifier_str_mv |
Marti, Etienne; Leray, Sarah; Roques, Clément; Yáñez, Gonzalo; Poblete, Fernando; et al.; Assessing Structural Geological Controls on Groundwater Processes in Mountain Settings: Insights From Three‐Dimensional Numerical Modeling; American Geophysical Union; Water Resources Research; 61; 8; 7-2025; 1-25 0043-1397 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024WR037474 info:eu-repo/semantics/altIdentifier/doi/10.1029/2024WR037474 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Geophysical Union |
publisher.none.fl_str_mv |
American Geophysical Union |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613210886373376 |
score |
13.070432 |