A study on labeling network hostile behavior with Intelligent Interactive tools
- Autores
- Guerra Torres, Jorge Luis; Veas, Eduardo Enrique; Catania, Carlos Adrian
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- Labeling a real network dataset is specially expensive in computersecurity, as an expert has to ponder several factors before assigningeach label. This paper describes an interactive intelligent systemto support the task of identifying hostile behaviors in network logs.The RiskID application uses visualizations to graphically encodefeatures of network connections and promote visual comparison. Inthe background, two algorithms are used to actively organize con-nections and predict potential labels: a recommendation algorithmand a semi-supervised learning strategy. These algorithms togetherwith interactive adaptions to the user interface constitute a behaviorrecommendation. A study is carried out to analyze how the algo-rithms for recommendation and prediction influence the workflowof labeling a dataset. The results of a study with 16 participantsindicate that the behaviour recommendation significantly improvesthe quality of labels. Analyzing interaction patterns, we identify amore intuitive workflow used when behaviour recommendation isavailable.
Fil: Guerra Torres, Jorge Luis. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; Argentina
Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina
2019 IEEE Symposium on Visualization for Cyber Security
Vancouver
Canadá
Institute of Electrical and Electronics Engineers - Materia
-
HUMAN-CENTERED COMPUTING
VISUALIZATION TECHNIQUES
LABELINGL
SEMI-SUPERVISED LEARNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/155070
Ver los metadatos del registro completo
id |
CONICETDig_178bf7a06d26d3008359b0cf4f3c23fa |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/155070 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A study on labeling network hostile behavior with Intelligent Interactive toolsGuerra Torres, Jorge LuisVeas, Eduardo EnriqueCatania, Carlos AdrianHUMAN-CENTERED COMPUTINGVISUALIZATION TECHNIQUESLABELINGLSEMI-SUPERVISED LEARNINGhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Labeling a real network dataset is specially expensive in computersecurity, as an expert has to ponder several factors before assigningeach label. This paper describes an interactive intelligent systemto support the task of identifying hostile behaviors in network logs.The RiskID application uses visualizations to graphically encodefeatures of network connections and promote visual comparison. Inthe background, two algorithms are used to actively organize con-nections and predict potential labels: a recommendation algorithmand a semi-supervised learning strategy. These algorithms togetherwith interactive adaptions to the user interface constitute a behaviorrecommendation. A study is carried out to analyze how the algo-rithms for recommendation and prediction influence the workflowof labeling a dataset. The results of a study with 16 participantsindicate that the behaviour recommendation significantly improvesthe quality of labels. Analyzing interaction patterns, we identify amore intuitive workflow used when behaviour recommendation isavailable.Fil: Guerra Torres, Jorge Luis. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; ArgentinaFil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina2019 IEEE Symposium on Visualization for Cyber SecurityVancouverCanadáInstitute of Electrical and Electronics EngineersIEEE CanadaGuerra Torres, Jorge Luis2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoJournalhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/155070A study on labeling network hostile behavior with Intelligent Interactive tools; 2019 IEEE Symposium on Visualization for Cyber Security; Vancouver; Canadá; 2019; 1-102639-4332CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9161489info:eu-repo/semantics/altIdentifier/doi/ 10.1109/VizSec48167.2019.9161489info:eu-repo/semantics/altIdentifier/url/https://pure.tugraz.at/ws/portalfiles/portal/25160237/VizSec2019_4.pdfhttps://www.youtube.com/watch?v=5MhjKygIaH0Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:06Zoai:ri.conicet.gov.ar:11336/155070instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:06.856CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A study on labeling network hostile behavior with Intelligent Interactive tools |
title |
A study on labeling network hostile behavior with Intelligent Interactive tools |
spellingShingle |
A study on labeling network hostile behavior with Intelligent Interactive tools Guerra Torres, Jorge Luis HUMAN-CENTERED COMPUTING VISUALIZATION TECHNIQUES LABELINGL SEMI-SUPERVISED LEARNING |
title_short |
A study on labeling network hostile behavior with Intelligent Interactive tools |
title_full |
A study on labeling network hostile behavior with Intelligent Interactive tools |
title_fullStr |
A study on labeling network hostile behavior with Intelligent Interactive tools |
title_full_unstemmed |
A study on labeling network hostile behavior with Intelligent Interactive tools |
title_sort |
A study on labeling network hostile behavior with Intelligent Interactive tools |
dc.creator.none.fl_str_mv |
Guerra Torres, Jorge Luis Veas, Eduardo Enrique Catania, Carlos Adrian |
author |
Guerra Torres, Jorge Luis |
author_facet |
Guerra Torres, Jorge Luis Veas, Eduardo Enrique Catania, Carlos Adrian |
author_role |
author |
author2 |
Veas, Eduardo Enrique Catania, Carlos Adrian |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Guerra Torres, Jorge Luis |
dc.subject.none.fl_str_mv |
HUMAN-CENTERED COMPUTING VISUALIZATION TECHNIQUES LABELINGL SEMI-SUPERVISED LEARNING |
topic |
HUMAN-CENTERED COMPUTING VISUALIZATION TECHNIQUES LABELINGL SEMI-SUPERVISED LEARNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Labeling a real network dataset is specially expensive in computersecurity, as an expert has to ponder several factors before assigningeach label. This paper describes an interactive intelligent systemto support the task of identifying hostile behaviors in network logs.The RiskID application uses visualizations to graphically encodefeatures of network connections and promote visual comparison. Inthe background, two algorithms are used to actively organize con-nections and predict potential labels: a recommendation algorithmand a semi-supervised learning strategy. These algorithms togetherwith interactive adaptions to the user interface constitute a behaviorrecommendation. A study is carried out to analyze how the algo-rithms for recommendation and prediction influence the workflowof labeling a dataset. The results of a study with 16 participantsindicate that the behaviour recommendation significantly improvesthe quality of labels. Analyzing interaction patterns, we identify amore intuitive workflow used when behaviour recommendation isavailable. Fil: Guerra Torres, Jorge Luis. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Veas, Eduardo Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo; Argentina Fil: Catania, Carlos Adrian. Universidad Nacional de Cuyo; Argentina 2019 IEEE Symposium on Visualization for Cyber Security Vancouver Canadá Institute of Electrical and Electronics Engineers |
description |
Labeling a real network dataset is specially expensive in computersecurity, as an expert has to ponder several factors before assigningeach label. This paper describes an interactive intelligent systemto support the task of identifying hostile behaviors in network logs.The RiskID application uses visualizations to graphically encodefeatures of network connections and promote visual comparison. Inthe background, two algorithms are used to actively organize con-nections and predict potential labels: a recommendation algorithmand a semi-supervised learning strategy. These algorithms togetherwith interactive adaptions to the user interface constitute a behaviorrecommendation. A study is carried out to analyze how the algo-rithms for recommendation and prediction influence the workflowof labeling a dataset. The results of a study with 16 participantsindicate that the behaviour recommendation significantly improvesthe quality of labels. Analyzing interaction patterns, we identify amore intuitive workflow used when behaviour recommendation isavailable. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Congreso Journal http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/155070 A study on labeling network hostile behavior with Intelligent Interactive tools; 2019 IEEE Symposium on Visualization for Cyber Security; Vancouver; Canadá; 2019; 1-10 2639-4332 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/155070 |
identifier_str_mv |
A study on labeling network hostile behavior with Intelligent Interactive tools; 2019 IEEE Symposium on Visualization for Cyber Security; Vancouver; Canadá; 2019; 1-10 2639-4332 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/9161489 info:eu-repo/semantics/altIdentifier/doi/ 10.1109/VizSec48167.2019.9161489 info:eu-repo/semantics/altIdentifier/url/https://pure.tugraz.at/ws/portalfiles/portal/25160237/VizSec2019_4.pdf https://www.youtube.com/watch?v=5MhjKygIaH0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
IEEE Canada |
publisher.none.fl_str_mv |
IEEE Canada |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614477825179648 |
score |
13.070432 |