Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants

Autores
del Pozo Gonzalez, Hector; Torrell, Marc; Bernadet, Lucile; Bianchi, Fernando Daniel; Trilla, Lluís; Tarancón, Albert; Domínguez García, Jose Luis
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Solid oxide technology has gained importance due to its higher efficiencies compared to other current hydrogen technologies. The reversible mode allows working with both technologies (SOEC-SOFC), which makes it very attractive for mixed operations, both storage and generation, increasing its usage and therefore the viability of the technology implementation. To improve the performance of reversible stacks, developing adequate control strategies is of great importance. In order to design these strategies, suitable models are needed. These control-oriented models should be simple for an efficient controller design, but also they should include all phenomena that can be affected by the control law. This article introduces a control-oriented modeling of a reversible solid oxide stack (rSOS) for the implementation of control strategies considering thermal and degradation effects. The model is validated with experimental data of a 1.5 kW laboratory prototype, analyzing both polarization curves and dynamic responses to different current profiles and compositions. An error of less than 3% between the model and experimental responses has been obtained, demonstrating the validity of the proposed control-oriented model. The proposed model allows performing new and deeper analysis of the role of reversible solid oxide cells in 24/7 generation plants with renewable energy sources.
Fil: del Pozo Gonzalez, Hector. Catalonia Institute For Energy Research; España
Fil: Torrell, Marc. Catalonia Institute For Energy Research; España
Fil: Bernadet, Lucile. Catalonia Institute For Energy Research; España
Fil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Trilla, Lluís. Catalonia Institute For Energy Research; España
Fil: Tarancón, Albert. Institució Catalana de Recerca i Estudis Avançats; España
Fil: Domínguez García, Jose Luis. Catalonia Institute For Energy Research; España
Materia
CONTROL-ORIENTED MODELING
EXPERIMENTAL RSOC
HYDROGEN
MATHEMATICAL MODELING
REVERSIBLE SOLID OXIDE CELLS (RSOC)
SOLID OXIDE ELECTROLYZER
SOLID OXIDE FUEL CELLS
STACK DEGRADATION
THERMAL SAFETY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219184

id CONICETDig_176eecbd9929484644c79d5aab633820
oai_identifier_str oai:ri.conicet.gov.ar:11336/219184
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plantsdel Pozo Gonzalez, HectorTorrell, MarcBernadet, LucileBianchi, Fernando DanielTrilla, LluísTarancón, AlbertDomínguez García, Jose LuisCONTROL-ORIENTED MODELINGEXPERIMENTAL RSOCHYDROGENMATHEMATICAL MODELINGREVERSIBLE SOLID OXIDE CELLS (RSOC)SOLID OXIDE ELECTROLYZERSOLID OXIDE FUEL CELLSSTACK DEGRADATIONTHERMAL SAFETYhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Solid oxide technology has gained importance due to its higher efficiencies compared to other current hydrogen technologies. The reversible mode allows working with both technologies (SOEC-SOFC), which makes it very attractive for mixed operations, both storage and generation, increasing its usage and therefore the viability of the technology implementation. To improve the performance of reversible stacks, developing adequate control strategies is of great importance. In order to design these strategies, suitable models are needed. These control-oriented models should be simple for an efficient controller design, but also they should include all phenomena that can be affected by the control law. This article introduces a control-oriented modeling of a reversible solid oxide stack (rSOS) for the implementation of control strategies considering thermal and degradation effects. The model is validated with experimental data of a 1.5 kW laboratory prototype, analyzing both polarization curves and dynamic responses to different current profiles and compositions. An error of less than 3% between the model and experimental responses has been obtained, demonstrating the validity of the proposed control-oriented model. The proposed model allows performing new and deeper analysis of the role of reversible solid oxide cells in 24/7 generation plants with renewable energy sources.Fil: del Pozo Gonzalez, Hector. Catalonia Institute For Energy Research; EspañaFil: Torrell, Marc. Catalonia Institute For Energy Research; EspañaFil: Bernadet, Lucile. Catalonia Institute For Energy Research; EspañaFil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trilla, Lluís. Catalonia Institute For Energy Research; EspañaFil: Tarancón, Albert. Institució Catalana de Recerca i Estudis Avançats; EspañaFil: Domínguez García, Jose Luis. Catalonia Institute For Energy Research; EspañaMDPI2023-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219184del Pozo Gonzalez, Hector; Torrell, Marc; Bernadet, Lucile; Bianchi, Fernando Daniel; Trilla, Lluís; et al.; Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants; MDPI; Mathematics; 11; 2; 1-2023; 1-182227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/2/366info:eu-repo/semantics/altIdentifier/doi/10.3390/math11020366info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:35Zoai:ri.conicet.gov.ar:11336/219184instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:35.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
title Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
spellingShingle Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
del Pozo Gonzalez, Hector
CONTROL-ORIENTED MODELING
EXPERIMENTAL RSOC
HYDROGEN
MATHEMATICAL MODELING
REVERSIBLE SOLID OXIDE CELLS (RSOC)
SOLID OXIDE ELECTROLYZER
SOLID OXIDE FUEL CELLS
STACK DEGRADATION
THERMAL SAFETY
title_short Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
title_full Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
title_fullStr Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
title_full_unstemmed Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
title_sort Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants
dc.creator.none.fl_str_mv del Pozo Gonzalez, Hector
Torrell, Marc
Bernadet, Lucile
Bianchi, Fernando Daniel
Trilla, Lluís
Tarancón, Albert
Domínguez García, Jose Luis
author del Pozo Gonzalez, Hector
author_facet del Pozo Gonzalez, Hector
Torrell, Marc
Bernadet, Lucile
Bianchi, Fernando Daniel
Trilla, Lluís
Tarancón, Albert
Domínguez García, Jose Luis
author_role author
author2 Torrell, Marc
Bernadet, Lucile
Bianchi, Fernando Daniel
Trilla, Lluís
Tarancón, Albert
Domínguez García, Jose Luis
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CONTROL-ORIENTED MODELING
EXPERIMENTAL RSOC
HYDROGEN
MATHEMATICAL MODELING
REVERSIBLE SOLID OXIDE CELLS (RSOC)
SOLID OXIDE ELECTROLYZER
SOLID OXIDE FUEL CELLS
STACK DEGRADATION
THERMAL SAFETY
topic CONTROL-ORIENTED MODELING
EXPERIMENTAL RSOC
HYDROGEN
MATHEMATICAL MODELING
REVERSIBLE SOLID OXIDE CELLS (RSOC)
SOLID OXIDE ELECTROLYZER
SOLID OXIDE FUEL CELLS
STACK DEGRADATION
THERMAL SAFETY
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Solid oxide technology has gained importance due to its higher efficiencies compared to other current hydrogen technologies. The reversible mode allows working with both technologies (SOEC-SOFC), which makes it very attractive for mixed operations, both storage and generation, increasing its usage and therefore the viability of the technology implementation. To improve the performance of reversible stacks, developing adequate control strategies is of great importance. In order to design these strategies, suitable models are needed. These control-oriented models should be simple for an efficient controller design, but also they should include all phenomena that can be affected by the control law. This article introduces a control-oriented modeling of a reversible solid oxide stack (rSOS) for the implementation of control strategies considering thermal and degradation effects. The model is validated with experimental data of a 1.5 kW laboratory prototype, analyzing both polarization curves and dynamic responses to different current profiles and compositions. An error of less than 3% between the model and experimental responses has been obtained, demonstrating the validity of the proposed control-oriented model. The proposed model allows performing new and deeper analysis of the role of reversible solid oxide cells in 24/7 generation plants with renewable energy sources.
Fil: del Pozo Gonzalez, Hector. Catalonia Institute For Energy Research; España
Fil: Torrell, Marc. Catalonia Institute For Energy Research; España
Fil: Bernadet, Lucile. Catalonia Institute For Energy Research; España
Fil: Bianchi, Fernando Daniel. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Trilla, Lluís. Catalonia Institute For Energy Research; España
Fil: Tarancón, Albert. Institució Catalana de Recerca i Estudis Avançats; España
Fil: Domínguez García, Jose Luis. Catalonia Institute For Energy Research; España
description Solid oxide technology has gained importance due to its higher efficiencies compared to other current hydrogen technologies. The reversible mode allows working with both technologies (SOEC-SOFC), which makes it very attractive for mixed operations, both storage and generation, increasing its usage and therefore the viability of the technology implementation. To improve the performance of reversible stacks, developing adequate control strategies is of great importance. In order to design these strategies, suitable models are needed. These control-oriented models should be simple for an efficient controller design, but also they should include all phenomena that can be affected by the control law. This article introduces a control-oriented modeling of a reversible solid oxide stack (rSOS) for the implementation of control strategies considering thermal and degradation effects. The model is validated with experimental data of a 1.5 kW laboratory prototype, analyzing both polarization curves and dynamic responses to different current profiles and compositions. An error of less than 3% between the model and experimental responses has been obtained, demonstrating the validity of the proposed control-oriented model. The proposed model allows performing new and deeper analysis of the role of reversible solid oxide cells in 24/7 generation plants with renewable energy sources.
publishDate 2023
dc.date.none.fl_str_mv 2023-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219184
del Pozo Gonzalez, Hector; Torrell, Marc; Bernadet, Lucile; Bianchi, Fernando Daniel; Trilla, Lluís; et al.; Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants; MDPI; Mathematics; 11; 2; 1-2023; 1-18
2227-7390
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219184
identifier_str_mv del Pozo Gonzalez, Hector; Torrell, Marc; Bernadet, Lucile; Bianchi, Fernando Daniel; Trilla, Lluís; et al.; Mathematical Modeling and Thermal Control of a 1.5 kW Reversible Solid Oxide Stack for 24/7 Hydrogen Plants; MDPI; Mathematics; 11; 2; 1-2023; 1-18
2227-7390
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/11/2/366
info:eu-repo/semantics/altIdentifier/doi/10.3390/math11020366
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269411559342080
score 13.13397