Positivity, entanglement entropy, and minimal surfaces
- Autores
 - Casini, Horacio German; Huerta, Marina
 - Año de publicación
 - 2012
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.
Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina
Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina - Materia
 - 
            
        THOOFT AND POLYAKOV LOOPS
ADS-CFT CORRESPONDENCE
FIELD THEORIES IN HIGHER DIMENSIONS
FIELD THEORIES IN LOWER DIMENSIONS
WILSON - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/198940
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_16e65f45dfbf19125457dd2b43fe5059 | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/198940 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Positivity, entanglement entropy, and minimal surfacesCasini, Horacio GermanHuerta, MarinaTHOOFT AND POLYAKOV LOOPSADS-CFT CORRESPONDENCEFIELD THEORIES IN HIGHER DIMENSIONSFIELD THEORIES IN LOWER DIMENSIONSWILSONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Huerta, Marina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaSpringer2012-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/198940Casini, Horacio German; Huerta, Marina; Positivity, entanglement entropy, and minimal surfaces; Springer; Journal of High Energy Physics; 2012; 11; 11-2012; 1-371126-6708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2012)087info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2012)087info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:11:17Zoai:ri.conicet.gov.ar:11336/198940instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:11:17.87CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| title | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| spellingShingle | 
                                Positivity, entanglement entropy, and minimal surfaces Casini, Horacio German THOOFT AND POLYAKOV LOOPS ADS-CFT CORRESPONDENCE FIELD THEORIES IN HIGHER DIMENSIONS FIELD THEORIES IN LOWER DIMENSIONS WILSON  | 
      
| title_short | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| title_full | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| title_fullStr | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| title_full_unstemmed | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| title_sort | 
                                Positivity, entanglement entropy, and minimal surfaces | 
      
| dc.creator.none.fl_str_mv | 
                                Casini, Horacio German Huerta, Marina  | 
      
| author | 
                                Casini, Horacio German | 
      
| author_facet | 
                                Casini, Horacio German Huerta, Marina  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Huerta, Marina | 
      
| author2_role | 
                                author | 
      
| dc.subject.none.fl_str_mv | 
                                THOOFT AND POLYAKOV LOOPS ADS-CFT CORRESPONDENCE FIELD THEORIES IN HIGHER DIMENSIONS FIELD THEORIES IN LOWER DIMENSIONS WILSON  | 
      
| topic | 
                                THOOFT AND POLYAKOV LOOPS ADS-CFT CORRESPONDENCE FIELD THEORIES IN HIGHER DIMENSIONS FIELD THEORIES IN LOWER DIMENSIONS WILSON  | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT. Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina Fil: Huerta, Marina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina  | 
      
| description | 
                                The path integral representation for the Renyi entanglement entropies of integer index n implies these information measures define operator correlation functions in QFT. We analyze whether the limit n → 1, corresponding to the entanglement entropy, can also be represented in terms of a path integral with insertions on the region's boundary, at first order in n-1. This conjecture has been used in the literature in several occasions, and specially in an attempt to prove the Ryu-Takayanagi holographic entanglement entropy formula. We show it leads to conditional positivity of the entropy correlation matrices, which is equivalent to an infinite series of polynomial inequalities for the entropies in QFT or the areas of minimal surfaces representing the entanglement entropy in the AdS-CFT context. We check these inequalities in several examples. No counterexample is found in the few known exact results for the entanglement entropy in QFT. The inequalities are also remarkable satisfied for several classes of minimal surfaces but we find counterexamples corresponding to more complicated geometries. We develop some analytic tools to test the inequalities, and as a byproduct, we show that positivity for the correlation functions is a local property when supplemented with analyticity. We also review general aspects of positivity for large N theories and Wilson loops in AdS-CFT. | 
      
| publishDate | 
                                2012 | 
      
| dc.date.none.fl_str_mv | 
                                2012-11 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/198940 Casini, Horacio German; Huerta, Marina; Positivity, entanglement entropy, and minimal surfaces; Springer; Journal of High Energy Physics; 2012; 11; 11-2012; 1-37 1126-6708 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/198940 | 
      
| identifier_str_mv | 
                                Casini, Horacio German; Huerta, Marina; Positivity, entanglement entropy, and minimal surfaces; Springer; Journal of High Energy Physics; 2012; 11; 11-2012; 1-37 1126-6708 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/JHEP11(2012)087 info:eu-repo/semantics/altIdentifier/doi/10.1007/JHEP11(2012)087  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                Springer | 
      
| publisher.none.fl_str_mv | 
                                Springer | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426950236209152 | 
      
| score | 
                                13.10058 |