An optimum path to obtain beta Cu-Zn-Al by mechanical alloying

Autores
Sesma, Fernando Gabriel; Gennari, Fabiana Cristina; Andrade Gamboa, J.; Pelegrina, Jorge Luis
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Cu–Zn–Al alloys have been produced by low energy ball milling following six different synthesis paths. In all cases, a mixture of a and b phases have been obtained. Milling for 100 h without interruptions the three elements simultaneously gave the best ratio between the amount of b phase and the milling time. Low temperature thermal treatments to the powders (up to 450 C) lead to c phase crystallite growth, with the amount of b phase remaining nearly constant. With anneals at 800 C the b phase fraction in the powder increased solely to 86%. A sample of pure b phase was obtained only after warm compaction at 680 MPa and sintering at temperatures above 800 C. In addition, it was necessary to reach temperatures of 900 C in order to have a material that transforms martensitically.
Fil: Sesma, Fernando Gabriel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gennari, Fabiana Cristina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina
Fil: Andrade Gamboa, J.. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina
Fil: Pelegrina, Jorge Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del área Investigaciones y Aplicaciones No Nucleares. Gerencia de Fisica (Centro Atómico Bariloche). División Física de Metales; Argentina
Materia
Metal And Alloys
Nanostructured Materials
Mechanical Alloying
Sintering
Phase Transitions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11008

id CONICETDig_168530391b9d676705f9687f48e06572
oai_identifier_str oai:ri.conicet.gov.ar:11336/11008
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An optimum path to obtain beta Cu-Zn-Al by mechanical alloyingSesma, Fernando GabrielGennari, Fabiana CristinaAndrade Gamboa, J.Pelegrina, Jorge LuisMetal And AlloysNanostructured MaterialsMechanical AlloyingSinteringPhase Transitionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Cu–Zn–Al alloys have been produced by low energy ball milling following six different synthesis paths. In all cases, a mixture of a and b phases have been obtained. Milling for 100 h without interruptions the three elements simultaneously gave the best ratio between the amount of b phase and the milling time. Low temperature thermal treatments to the powders (up to 450 C) lead to c phase crystallite growth, with the amount of b phase remaining nearly constant. With anneals at 800 C the b phase fraction in the powder increased solely to 86%. A sample of pure b phase was obtained only after warm compaction at 680 MPa and sintering at temperatures above 800 C. In addition, it was necessary to reach temperatures of 900 C in order to have a material that transforms martensitically.Fil: Sesma, Fernando Gabriel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gennari, Fabiana Cristina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; ArgentinaFil: Andrade Gamboa, J.. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; ArgentinaFil: Pelegrina, Jorge Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del área Investigaciones y Aplicaciones No Nucleares. Gerencia de Fisica (Centro Atómico Bariloche). División Física de Metales; ArgentinaElsevier Science2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11008Sesma, Fernando Gabriel; Gennari, Fabiana Cristina; Andrade Gamboa, J.; Pelegrina, Jorge Luis; An optimum path to obtain beta Cu-Zn-Al by mechanical alloying; Elsevier Science; Journal of Alloys and Compounds; 573; 3-2013; 122-1270925-8388enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838813009213info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2013.04.038info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:35:02Zoai:ri.conicet.gov.ar:11336/11008instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:35:03.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
title An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
spellingShingle An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
Sesma, Fernando Gabriel
Metal And Alloys
Nanostructured Materials
Mechanical Alloying
Sintering
Phase Transitions
title_short An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
title_full An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
title_fullStr An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
title_full_unstemmed An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
title_sort An optimum path to obtain beta Cu-Zn-Al by mechanical alloying
dc.creator.none.fl_str_mv Sesma, Fernando Gabriel
Gennari, Fabiana Cristina
Andrade Gamboa, J.
Pelegrina, Jorge Luis
author Sesma, Fernando Gabriel
author_facet Sesma, Fernando Gabriel
Gennari, Fabiana Cristina
Andrade Gamboa, J.
Pelegrina, Jorge Luis
author_role author
author2 Gennari, Fabiana Cristina
Andrade Gamboa, J.
Pelegrina, Jorge Luis
author2_role author
author
author
dc.subject.none.fl_str_mv Metal And Alloys
Nanostructured Materials
Mechanical Alloying
Sintering
Phase Transitions
topic Metal And Alloys
Nanostructured Materials
Mechanical Alloying
Sintering
Phase Transitions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Cu–Zn–Al alloys have been produced by low energy ball milling following six different synthesis paths. In all cases, a mixture of a and b phases have been obtained. Milling for 100 h without interruptions the three elements simultaneously gave the best ratio between the amount of b phase and the milling time. Low temperature thermal treatments to the powders (up to 450 C) lead to c phase crystallite growth, with the amount of b phase remaining nearly constant. With anneals at 800 C the b phase fraction in the powder increased solely to 86%. A sample of pure b phase was obtained only after warm compaction at 680 MPa and sintering at temperatures above 800 C. In addition, it was necessary to reach temperatures of 900 C in order to have a material that transforms martensitically.
Fil: Sesma, Fernando Gabriel. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gennari, Fabiana Cristina. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina
Fil: Andrade Gamboa, J.. Comision Nacional de Energia Atomica. Centro Atomico Bariloche; Argentina
Fil: Pelegrina, Jorge Luis. Comision Nacional de Energia Atomica. Gerencia del Area de Investigaciones y Aplicaciones no Nucleares. Gerencia de Fisica (CAB); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del área Investigaciones y Aplicaciones No Nucleares. Gerencia de Fisica (Centro Atómico Bariloche). División Física de Metales; Argentina
description Cu–Zn–Al alloys have been produced by low energy ball milling following six different synthesis paths. In all cases, a mixture of a and b phases have been obtained. Milling for 100 h without interruptions the three elements simultaneously gave the best ratio between the amount of b phase and the milling time. Low temperature thermal treatments to the powders (up to 450 C) lead to c phase crystallite growth, with the amount of b phase remaining nearly constant. With anneals at 800 C the b phase fraction in the powder increased solely to 86%. A sample of pure b phase was obtained only after warm compaction at 680 MPa and sintering at temperatures above 800 C. In addition, it was necessary to reach temperatures of 900 C in order to have a material that transforms martensitically.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11008
Sesma, Fernando Gabriel; Gennari, Fabiana Cristina; Andrade Gamboa, J.; Pelegrina, Jorge Luis; An optimum path to obtain beta Cu-Zn-Al by mechanical alloying; Elsevier Science; Journal of Alloys and Compounds; 573; 3-2013; 122-127
0925-8388
url http://hdl.handle.net/11336/11008
identifier_str_mv Sesma, Fernando Gabriel; Gennari, Fabiana Cristina; Andrade Gamboa, J.; Pelegrina, Jorge Luis; An optimum path to obtain beta Cu-Zn-Al by mechanical alloying; Elsevier Science; Journal of Alloys and Compounds; 573; 3-2013; 122-127
0925-8388
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838813009213
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jallcom.2013.04.038
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781981561454592
score 12.982451