Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system

Autores
Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.
Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; Colombia
Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Ni-In-Sn System
Ni2in (Hp6) Sublattice Model
Thermodynamic And Electronic Properties
Ab Initio Calculations
Lead-Free Soldering Alloys
Intermetallics
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11667

id CONICETDig_158278328dceef2485c42fb18a4eca4a
oai_identifier_str oai:ri.conicet.gov.ar:11336/11667
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn systemRamos, Susana BeatrizGonzalez Lemus, Nasly VanessaDeluque Toro, C.Fernandez Guillermet, Armando JorgeNi-In-Sn SystemNi2in (Hp6) Sublattice ModelThermodynamic And Electronic PropertiesAb Initio CalculationsLead-Free Soldering AlloysIntermetallicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; ColombiaFil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11667Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-4730925-8388enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814020921info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jallcom.2014.08.217info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:38:08Zoai:ri.conicet.gov.ar:11336/11667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:38:08.315CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
title Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
spellingShingle Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
Ramos, Susana Beatriz
Ni-In-Sn System
Ni2in (Hp6) Sublattice Model
Thermodynamic And Electronic Properties
Ab Initio Calculations
Lead-Free Soldering Alloys
Intermetallics
title_short Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
title_full Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
title_fullStr Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
title_full_unstemmed Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
title_sort Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
dc.creator.none.fl_str_mv Ramos, Susana Beatriz
Gonzalez Lemus, Nasly Vanessa
Deluque Toro, C.
Fernandez Guillermet, Armando Jorge
author Ramos, Susana Beatriz
author_facet Ramos, Susana Beatriz
Gonzalez Lemus, Nasly Vanessa
Deluque Toro, C.
Fernandez Guillermet, Armando Jorge
author_role author
author2 Gonzalez Lemus, Nasly Vanessa
Deluque Toro, C.
Fernandez Guillermet, Armando Jorge
author2_role author
author
author
dc.subject.none.fl_str_mv Ni-In-Sn System
Ni2in (Hp6) Sublattice Model
Thermodynamic And Electronic Properties
Ab Initio Calculations
Lead-Free Soldering Alloys
Intermetallics
topic Ni-In-Sn System
Ni2in (Hp6) Sublattice Model
Thermodynamic And Electronic Properties
Ab Initio Calculations
Lead-Free Soldering Alloys
Intermetallics
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.
Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; Colombia
Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.
publishDate 2014
dc.date.none.fl_str_mv 2014-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11667
Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-473
0925-8388
url http://hdl.handle.net/11336/11667
identifier_str_mv Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-473
0925-8388
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814020921
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jallcom.2014.08.217
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782035491815424
score 12.982451