Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system
- Autores
- Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.
Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina
Fil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; Colombia
Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Ni-In-Sn System
Ni2in (Hp6) Sublattice Model
Thermodynamic And Electronic Properties
Ab Initio Calculations
Lead-Free Soldering Alloys
Intermetallics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11667
Ver los metadatos del registro completo
id |
CONICETDig_158278328dceef2485c42fb18a4eca4a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11667 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn systemRamos, Susana BeatrizGonzalez Lemus, Nasly VanessaDeluque Toro, C.Fernandez Guillermet, Armando JorgeNi-In-Sn SystemNi2in (Hp6) Sublattice ModelThermodynamic And Electronic PropertiesAb Initio CalculationsLead-Free Soldering AlloysIntermetallicshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds.Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; ArgentinaFil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; ColombiaFil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2014-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11667Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-4730925-8388enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814020921info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jallcom.2014.08.217info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:38:08Zoai:ri.conicet.gov.ar:11336/11667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:38:08.315CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
title |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
spellingShingle |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system Ramos, Susana Beatriz Ni-In-Sn System Ni2in (Hp6) Sublattice Model Thermodynamic And Electronic Properties Ab Initio Calculations Lead-Free Soldering Alloys Intermetallics |
title_short |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
title_full |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
title_fullStr |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
title_full_unstemmed |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
title_sort |
Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system |
dc.creator.none.fl_str_mv |
Ramos, Susana Beatriz Gonzalez Lemus, Nasly Vanessa Deluque Toro, C. Fernandez Guillermet, Armando Jorge |
author |
Ramos, Susana Beatriz |
author_facet |
Ramos, Susana Beatriz Gonzalez Lemus, Nasly Vanessa Deluque Toro, C. Fernandez Guillermet, Armando Jorge |
author_role |
author |
author2 |
Gonzalez Lemus, Nasly Vanessa Deluque Toro, C. Fernandez Guillermet, Armando Jorge |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Ni-In-Sn System Ni2in (Hp6) Sublattice Model Thermodynamic And Electronic Properties Ab Initio Calculations Lead-Free Soldering Alloys Intermetallics |
topic |
Ni-In-Sn System Ni2in (Hp6) Sublattice Model Thermodynamic And Electronic Properties Ab Initio Calculations Lead-Free Soldering Alloys Intermetallics |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds. Fil: Ramos, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Patagonia Norte. Instituto de Investigación y Desarrollo En Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina. Universidad Nacional del Comahue. Facultad de Ingeniería; Argentina Fil: Gonzalez Lemus, Nasly Vanessa. Universidad Nacional del Comahue. Facultad de Ingeniería. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Deluque Toro, C.. Universidad de la Guajira. Grupo de Nuevos Materiales; Colombia Fil: Fernandez Guillermet, Armando Jorge. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
The thermodynamic modeling of non-stoichiometric, multisublattice intermetallic phases using the Compound-Energy Formalism (CEF) involves the determination of parameters representing the Gibbs energy (Gm) of binary compounds, the so-called ‘‘end-member compounds’’ (EMCs), which are often metastable or hypothetical. In current CALPHAD (i.e., ‘‘Calculation of Phase Diagrams’’) work, these quantities are treated as free parameters to be determined by searching for the best fit to the available information in the optimization procedure. The general purpose of this paper is to propose a theoretical approach to the study of the EMCs which makes use of density-functional-theory (DFT) ab initio calculations. The present method is applied to the EMCs involved in the CEF modeling of the non-stoichiometric (hP6) Ni2In-structure type phase of the Ni–In and Ni–In–Sn systems using the three-sublattice models (Ni)1(Ni,Va)1(In,Ni)1 and (Ni,Va)1(Ni,Va)1(In,Ni,Sn)1, respectively. By means of systematic ab initio projected augmented waves (PAW) calculations using the VASP code we study the EMCs involved in the CEF formulations of the Gm for this phase in the binary and the ternary systems. Specifically, we study the twelve EMCs corresponding to the following sublattice occupations: (Ni)1(Ni)1(In)1, which is usually described as Ni:Ni:In (i.e., a compound with formula ‘‘Ni2In’’), Ni:Ni:Ni (i.e., ‘‘Ni3’’), Ni:Ni:Sn (‘‘Ni2Sn’’), Ni:Va:In (i.e., ‘‘NiIn’’), Ni:Va:Ni (i.e., ‘‘Ni2’’), Ni:Va:Sn (‘‘NiSn’’), Va:Ni:In (‘‘NiIn’’), Va:Ni:Ni (‘‘Ni2’’), Va:Ni:Sn (‘‘NiSn’’), Va:Va:In (‘‘In’’), Va:Va:Ni (‘‘Ni’’), and Va:Va:Sn (‘‘Sn’’). For the listed EMCs, we report the latticeparameters, the volume per atom, the electronic density of states and various types of cohesive properties usually taken as macroscopic manifestations of the bonding strength, viz., the bulk modulus and its pressure derivative, the cohesive energy and the energy of formation from the elements. Trends in these quantities are established as a function of the occupation of the various sublattices by the different components and discussed in terms of the interactions between d electrons of the transition element as well as the hybridization between them and the s and p electrons of the non-transition metal. In addition to the reported thermodynamic information of direct use as input in the CALPHAD optimizations, the picture of the variations in cohesive properties emerging from the present work should be useful in systematizing the thermophysical and structural database for this class of compounds. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11667 Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-473 0925-8388 |
url |
http://hdl.handle.net/11336/11667 |
identifier_str_mv |
Ramos, Susana Beatriz; Gonzalez Lemus, Nasly Vanessa; Deluque Toro, C.; Fernandez Guillermet, Armando Jorge; Ab initio study of the compound-energy modeling of multisublattice structures: the (hP6) Ni2In-type intermetallics of the Ni–In–Sn system; Elsevier Science; Journal Of Alloys And Compounds; 619; 1-2014; 464-473 0925-8388 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0925838814020921 info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.jallcom.2014.08.217 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846782035491815424 |
score |
12.982451 |