Tuning morphological features of lead iodide by low pressure vapor phase deposition

Autores
Koffman Frischknecht, Alejandro; Soldera, Marcos Maximiliano; Soldera, Flavio Andres; Troviano, Mauricio Eduardo; Carlos, Luciano; Pérez, María Dolores; Taretto, Kurt Rodolfo
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Lead iodide (PbI2) is a semiconductor with extensive use as an active layer for X-ray detectors and as a precursor for perovskite solar cells. Here we present a low vacuum method to obtain very uniform PbI2 films with full substrate coverage. This method consists in the sublimation of PbI2 inside a hot zone and its transport by an Ar flow to a substrate held at a controlled temperature. Using scanning electron microscopy combined with focused ion beam and X-ray diffraction we studied the morphology and crystallographic structure of the PbI2 films with different deposition parameters: substrate and source evaporation temperature, deposition time and substrate material. At high substrate temperature (80 °C) and low evaporation temperature (310 °C) onto a glass sample, we obtained dense and smooth PbI2 films showing hexagonal crystals, or platelets, stacked parallel to the substrate. The choice of the substrate material has a significant impact on the film morphology yielding porous-like structures with voids within the films for some substrates. A bandgap Eg = 2.42 eV and Urbach energy EU = 34.7 meV were obtained by absorbance measurements, which are comparable to films evaporated in high vacuum. Photoluminescence studies showed a dependence of the emission energies on the crystal orientation of the platelets which grow differently depending on the deposition conditions. The results show the ability of the low pressure vapor phase deposition technique to obtain good film properties, suitable for sensors and optoelectronic devices.
Fil: Koffman Frischknecht, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Soldera, Flavio Andres. Universitat Saarland; Alemania
Fil: Troviano, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Carlos, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Pérez, María Dolores. Comisión Nacional de Energía Atómica; Argentina
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Materia
FILMS GROWTH
LOW PRESSURE VAPOR PHASE DEPOSITION
PEROVSKITE SOLAR CELL PRECURSORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88800

id CONICETDig_1543d8b7561eaa6fb7b5f9ab3b11879b
oai_identifier_str oai:ri.conicet.gov.ar:11336/88800
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Tuning morphological features of lead iodide by low pressure vapor phase depositionKoffman Frischknecht, AlejandroSoldera, Marcos MaximilianoSoldera, Flavio AndresTroviano, Mauricio EduardoCarlos, LucianoPérez, María DoloresTaretto, Kurt RodolfoFILMS GROWTHLOW PRESSURE VAPOR PHASE DEPOSITIONPEROVSKITE SOLAR CELL PRECURSORShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2Lead iodide (PbI2) is a semiconductor with extensive use as an active layer for X-ray detectors and as a precursor for perovskite solar cells. Here we present a low vacuum method to obtain very uniform PbI2 films with full substrate coverage. This method consists in the sublimation of PbI2 inside a hot zone and its transport by an Ar flow to a substrate held at a controlled temperature. Using scanning electron microscopy combined with focused ion beam and X-ray diffraction we studied the morphology and crystallographic structure of the PbI2 films with different deposition parameters: substrate and source evaporation temperature, deposition time and substrate material. At high substrate temperature (80 °C) and low evaporation temperature (310 °C) onto a glass sample, we obtained dense and smooth PbI2 films showing hexagonal crystals, or platelets, stacked parallel to the substrate. The choice of the substrate material has a significant impact on the film morphology yielding porous-like structures with voids within the films for some substrates. A bandgap Eg = 2.42 eV and Urbach energy EU = 34.7 meV were obtained by absorbance measurements, which are comparable to films evaporated in high vacuum. Photoluminescence studies showed a dependence of the emission energies on the crystal orientation of the platelets which grow differently depending on the deposition conditions. The results show the ability of the low pressure vapor phase deposition technique to obtain good film properties, suitable for sensors and optoelectronic devices.Fil: Koffman Frischknecht, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Soldera, Flavio Andres. Universitat Saarland; AlemaniaFil: Troviano, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Carlos, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Pérez, María Dolores. Comisión Nacional de Energía Atómica; ArgentinaFil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaElsevier Science Sa2018-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88800Koffman Frischknecht, Alejandro; Soldera, Marcos Maximiliano; Soldera, Flavio Andres; Troviano, Mauricio Eduardo; Carlos, Luciano; et al.; Tuning morphological features of lead iodide by low pressure vapor phase deposition; Elsevier Science Sa; Thin Solid Films; 653; 5-2018; 249-2570040-6090CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0040609018301846info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tsf.2018.03.040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:38:51Zoai:ri.conicet.gov.ar:11336/88800instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:38:51.376CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Tuning morphological features of lead iodide by low pressure vapor phase deposition
title Tuning morphological features of lead iodide by low pressure vapor phase deposition
spellingShingle Tuning morphological features of lead iodide by low pressure vapor phase deposition
Koffman Frischknecht, Alejandro
FILMS GROWTH
LOW PRESSURE VAPOR PHASE DEPOSITION
PEROVSKITE SOLAR CELL PRECURSORS
title_short Tuning morphological features of lead iodide by low pressure vapor phase deposition
title_full Tuning morphological features of lead iodide by low pressure vapor phase deposition
title_fullStr Tuning morphological features of lead iodide by low pressure vapor phase deposition
title_full_unstemmed Tuning morphological features of lead iodide by low pressure vapor phase deposition
title_sort Tuning morphological features of lead iodide by low pressure vapor phase deposition
dc.creator.none.fl_str_mv Koffman Frischknecht, Alejandro
Soldera, Marcos Maximiliano
Soldera, Flavio Andres
Troviano, Mauricio Eduardo
Carlos, Luciano
Pérez, María Dolores
Taretto, Kurt Rodolfo
author Koffman Frischknecht, Alejandro
author_facet Koffman Frischknecht, Alejandro
Soldera, Marcos Maximiliano
Soldera, Flavio Andres
Troviano, Mauricio Eduardo
Carlos, Luciano
Pérez, María Dolores
Taretto, Kurt Rodolfo
author_role author
author2 Soldera, Marcos Maximiliano
Soldera, Flavio Andres
Troviano, Mauricio Eduardo
Carlos, Luciano
Pérez, María Dolores
Taretto, Kurt Rodolfo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv FILMS GROWTH
LOW PRESSURE VAPOR PHASE DEPOSITION
PEROVSKITE SOLAR CELL PRECURSORS
topic FILMS GROWTH
LOW PRESSURE VAPOR PHASE DEPOSITION
PEROVSKITE SOLAR CELL PRECURSORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Lead iodide (PbI2) is a semiconductor with extensive use as an active layer for X-ray detectors and as a precursor for perovskite solar cells. Here we present a low vacuum method to obtain very uniform PbI2 films with full substrate coverage. This method consists in the sublimation of PbI2 inside a hot zone and its transport by an Ar flow to a substrate held at a controlled temperature. Using scanning electron microscopy combined with focused ion beam and X-ray diffraction we studied the morphology and crystallographic structure of the PbI2 films with different deposition parameters: substrate and source evaporation temperature, deposition time and substrate material. At high substrate temperature (80 °C) and low evaporation temperature (310 °C) onto a glass sample, we obtained dense and smooth PbI2 films showing hexagonal crystals, or platelets, stacked parallel to the substrate. The choice of the substrate material has a significant impact on the film morphology yielding porous-like structures with voids within the films for some substrates. A bandgap Eg = 2.42 eV and Urbach energy EU = 34.7 meV were obtained by absorbance measurements, which are comparable to films evaporated in high vacuum. Photoluminescence studies showed a dependence of the emission energies on the crystal orientation of the platelets which grow differently depending on the deposition conditions. The results show the ability of the low pressure vapor phase deposition technique to obtain good film properties, suitable for sensors and optoelectronic devices.
Fil: Koffman Frischknecht, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Soldera, Marcos Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Soldera, Flavio Andres. Universitat Saarland; Alemania
Fil: Troviano, Mauricio Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Carlos, Luciano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Pérez, María Dolores. Comisión Nacional de Energía Atómica; Argentina
Fil: Taretto, Kurt Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
description Lead iodide (PbI2) is a semiconductor with extensive use as an active layer for X-ray detectors and as a precursor for perovskite solar cells. Here we present a low vacuum method to obtain very uniform PbI2 films with full substrate coverage. This method consists in the sublimation of PbI2 inside a hot zone and its transport by an Ar flow to a substrate held at a controlled temperature. Using scanning electron microscopy combined with focused ion beam and X-ray diffraction we studied the morphology and crystallographic structure of the PbI2 films with different deposition parameters: substrate and source evaporation temperature, deposition time and substrate material. At high substrate temperature (80 °C) and low evaporation temperature (310 °C) onto a glass sample, we obtained dense and smooth PbI2 films showing hexagonal crystals, or platelets, stacked parallel to the substrate. The choice of the substrate material has a significant impact on the film morphology yielding porous-like structures with voids within the films for some substrates. A bandgap Eg = 2.42 eV and Urbach energy EU = 34.7 meV were obtained by absorbance measurements, which are comparable to films evaporated in high vacuum. Photoluminescence studies showed a dependence of the emission energies on the crystal orientation of the platelets which grow differently depending on the deposition conditions. The results show the ability of the low pressure vapor phase deposition technique to obtain good film properties, suitable for sensors and optoelectronic devices.
publishDate 2018
dc.date.none.fl_str_mv 2018-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88800
Koffman Frischknecht, Alejandro; Soldera, Marcos Maximiliano; Soldera, Flavio Andres; Troviano, Mauricio Eduardo; Carlos, Luciano; et al.; Tuning morphological features of lead iodide by low pressure vapor phase deposition; Elsevier Science Sa; Thin Solid Films; 653; 5-2018; 249-257
0040-6090
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88800
identifier_str_mv Koffman Frischknecht, Alejandro; Soldera, Marcos Maximiliano; Soldera, Flavio Andres; Troviano, Mauricio Eduardo; Carlos, Luciano; et al.; Tuning morphological features of lead iodide by low pressure vapor phase deposition; Elsevier Science Sa; Thin Solid Films; 653; 5-2018; 249-257
0040-6090
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0040609018301846
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tsf.2018.03.040
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614412217876480
score 13.070432