New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultra...

Autores
Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; Damm, Timo; Daugschies, Melanie; Huber, Gerd; Lu, Yongtao; Peña, Jaime; Waldhausen, Sonja; Bastgen, Jan; Rodhe, Kerstin; Steinebach, Inga; Thomsen, Felix Sebastian Leo; Amling, Michael; Barkmann, Reinhard; Engelke, Klaus; Morlock, Michael M.; Pfeilschifter, Johannes; Püschel, Klaus
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.
Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären.
Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; Alemania
Fil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania
Fil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania
Fil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania
Materia
Osteoporosis
Finite Element Analysis
Bone Quality
Quantitative Ultrasound
Mineralization
High Resolution Quantitative Computed Tomography
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/11748

id CONICETDig_13f1dc4b80f422d9d1349648daa31f60
oai_identifier_str oai:ri.conicet.gov.ar:11336/11748
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortiumNeue Horizonte für die in vivo Bestimmung wesentlicher Aspekte der Knochenqualität: Mikrostruktur und Materialeigenschaften, bestimmt mit Quantitativer Computertomographie und Quantitativen Ultrasound Methoden, entwickelt durch das BioAsset KonsortiumGlüer, Claus C.Krausse, MatthiasMuseyko, OlegWulff, BirgitCampbell, GraemeDamm, TimoDaugschies, MelanieHuber, GerdLu, YongtaoPeña, JaimeWaldhausen, SonjaBastgen, JanRodhe, KerstinSteinebach, IngaThomsen, Felix Sebastian LeoAmling, MichaelBarkmann, ReinhardEngelke, KlausMorlock, Michael M.Pfeilschifter, JohannesPüschel, KlausOsteoporosisFinite Element AnalysisBone QualityQuantitative UltrasoundMineralizationHigh Resolution Quantitative Computed Tomographyhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären.Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; AlemaniaFil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; AlemaniaFil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; AlemaniaFil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; AlemaniaFil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; ArgentinaFil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; AlemaniaFil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; AlemaniaFil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; AlemaniaFil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; AlemaniaSchattauer Gmbh-verlag Medizin Naturwissenschaften2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11748Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-2481019-1291enginfo:eu-repo/semantics/altIdentifier/url/http://www.schattauer.de/en/magazine/subject-areas/journals-a-z/osteology/contents/archive/issue/1788/manuscript/20255.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:42Zoai:ri.conicet.gov.ar:11336/11748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:42.694CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
Neue Horizonte für die in vivo Bestimmung wesentlicher Aspekte der Knochenqualität: Mikrostruktur und Materialeigenschaften, bestimmt mit Quantitativer Computertomographie und Quantitativen Ultrasound Methoden, entwickelt durch das BioAsset Konsortium
title New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
spellingShingle New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
Glüer, Claus C.
Osteoporosis
Finite Element Analysis
Bone Quality
Quantitative Ultrasound
Mineralization
High Resolution Quantitative Computed Tomography
title_short New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
title_full New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
title_fullStr New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
title_full_unstemmed New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
title_sort New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium
dc.creator.none.fl_str_mv Glüer, Claus C.
Krausse, Matthias
Museyko, Oleg
Wulff, Birgit
Campbell, Graeme
Damm, Timo
Daugschies, Melanie
Huber, Gerd
Lu, Yongtao
Peña, Jaime
Waldhausen, Sonja
Bastgen, Jan
Rodhe, Kerstin
Steinebach, Inga
Thomsen, Felix Sebastian Leo
Amling, Michael
Barkmann, Reinhard
Engelke, Klaus
Morlock, Michael M.
Pfeilschifter, Johannes
Püschel, Klaus
author Glüer, Claus C.
author_facet Glüer, Claus C.
Krausse, Matthias
Museyko, Oleg
Wulff, Birgit
Campbell, Graeme
Damm, Timo
Daugschies, Melanie
Huber, Gerd
Lu, Yongtao
Peña, Jaime
Waldhausen, Sonja
Bastgen, Jan
Rodhe, Kerstin
Steinebach, Inga
Thomsen, Felix Sebastian Leo
Amling, Michael
Barkmann, Reinhard
Engelke, Klaus
Morlock, Michael M.
Pfeilschifter, Johannes
Püschel, Klaus
author_role author
author2 Krausse, Matthias
Museyko, Oleg
Wulff, Birgit
Campbell, Graeme
Damm, Timo
Daugschies, Melanie
Huber, Gerd
Lu, Yongtao
Peña, Jaime
Waldhausen, Sonja
Bastgen, Jan
Rodhe, Kerstin
Steinebach, Inga
Thomsen, Felix Sebastian Leo
Amling, Michael
Barkmann, Reinhard
Engelke, Klaus
Morlock, Michael M.
Pfeilschifter, Johannes
Püschel, Klaus
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Osteoporosis
Finite Element Analysis
Bone Quality
Quantitative Ultrasound
Mineralization
High Resolution Quantitative Computed Tomography
topic Osteoporosis
Finite Element Analysis
Bone Quality
Quantitative Ultrasound
Mineralization
High Resolution Quantitative Computed Tomography
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.
Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären.
Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; Alemania
Fil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania
Fil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania
Fil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania
description The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.
publishDate 2013
dc.date.none.fl_str_mv 2013-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/11748
Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-248
1019-1291
url http://hdl.handle.net/11336/11748
identifier_str_mv Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-248
1019-1291
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.schattauer.de/en/magazine/subject-areas/journals-a-z/osteology/contents/archive/issue/1788/manuscript/20255.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Schattauer Gmbh-verlag Medizin Naturwissenschaften
publisher.none.fl_str_mv Schattauer Gmbh-verlag Medizin Naturwissenschaften
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842270055681753088
score 13.13397