New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultra...
- Autores
- Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; Damm, Timo; Daugschies, Melanie; Huber, Gerd; Lu, Yongtao; Peña, Jaime; Waldhausen, Sonja; Bastgen, Jan; Rodhe, Kerstin; Steinebach, Inga; Thomsen, Felix Sebastian Leo; Amling, Michael; Barkmann, Reinhard; Engelke, Klaus; Morlock, Michael M.; Pfeilschifter, Johannes; Püschel, Klaus
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.
Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären.
Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; Alemania
Fil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania
Fil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina
Fil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania
Fil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; Alemania
Fil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; Alemania
Fil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania
Fil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania
Fil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania - Materia
-
Osteoporosis
Finite Element Analysis
Bone Quality
Quantitative Ultrasound
Mineralization
High Resolution Quantitative Computed Tomography - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/11748
Ver los metadatos del registro completo
id |
CONICETDig_13f1dc4b80f422d9d1349648daa31f60 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/11748 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortiumNeue Horizonte für die in vivo Bestimmung wesentlicher Aspekte der Knochenqualität: Mikrostruktur und Materialeigenschaften, bestimmt mit Quantitativer Computertomographie und Quantitativen Ultrasound Methoden, entwickelt durch das BioAsset KonsortiumGlüer, Claus C.Krausse, MatthiasMuseyko, OlegWulff, BirgitCampbell, GraemeDamm, TimoDaugschies, MelanieHuber, GerdLu, YongtaoPeña, JaimeWaldhausen, SonjaBastgen, JanRodhe, KerstinSteinebach, IngaThomsen, Felix Sebastian LeoAmling, MichaelBarkmann, ReinhardEngelke, KlausMorlock, Michael M.Pfeilschifter, JohannesPüschel, KlausOsteoporosisFinite Element AnalysisBone QualityQuantitative UltrasoundMineralizationHigh Resolution Quantitative Computed Tomographyhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures.Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären.Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; AlemaniaFil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; AlemaniaFil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; AlemaniaFil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; AlemaniaFil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; ArgentinaFil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; AlemaniaFil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; AlemaniaFil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; AlemaniaFil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; AlemaniaFil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; AlemaniaFil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; AlemaniaSchattauer Gmbh-verlag Medizin Naturwissenschaften2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/11748Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-2481019-1291enginfo:eu-repo/semantics/altIdentifier/url/http://www.schattauer.de/en/magazine/subject-areas/journals-a-z/osteology/contents/archive/issue/1788/manuscript/20255.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:08:42Zoai:ri.conicet.gov.ar:11336/11748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:08:42.694CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium Neue Horizonte für die in vivo Bestimmung wesentlicher Aspekte der Knochenqualität: Mikrostruktur und Materialeigenschaften, bestimmt mit Quantitativer Computertomographie und Quantitativen Ultrasound Methoden, entwickelt durch das BioAsset Konsortium |
title |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
spellingShingle |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium Glüer, Claus C. Osteoporosis Finite Element Analysis Bone Quality Quantitative Ultrasound Mineralization High Resolution Quantitative Computed Tomography |
title_short |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
title_full |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
title_fullStr |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
title_full_unstemmed |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
title_sort |
New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium |
dc.creator.none.fl_str_mv |
Glüer, Claus C. Krausse, Matthias Museyko, Oleg Wulff, Birgit Campbell, Graeme Damm, Timo Daugschies, Melanie Huber, Gerd Lu, Yongtao Peña, Jaime Waldhausen, Sonja Bastgen, Jan Rodhe, Kerstin Steinebach, Inga Thomsen, Felix Sebastian Leo Amling, Michael Barkmann, Reinhard Engelke, Klaus Morlock, Michael M. Pfeilschifter, Johannes Püschel, Klaus |
author |
Glüer, Claus C. |
author_facet |
Glüer, Claus C. Krausse, Matthias Museyko, Oleg Wulff, Birgit Campbell, Graeme Damm, Timo Daugschies, Melanie Huber, Gerd Lu, Yongtao Peña, Jaime Waldhausen, Sonja Bastgen, Jan Rodhe, Kerstin Steinebach, Inga Thomsen, Felix Sebastian Leo Amling, Michael Barkmann, Reinhard Engelke, Klaus Morlock, Michael M. Pfeilschifter, Johannes Püschel, Klaus |
author_role |
author |
author2 |
Krausse, Matthias Museyko, Oleg Wulff, Birgit Campbell, Graeme Damm, Timo Daugschies, Melanie Huber, Gerd Lu, Yongtao Peña, Jaime Waldhausen, Sonja Bastgen, Jan Rodhe, Kerstin Steinebach, Inga Thomsen, Felix Sebastian Leo Amling, Michael Barkmann, Reinhard Engelke, Klaus Morlock, Michael M. Pfeilschifter, Johannes Püschel, Klaus |
author2_role |
author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Osteoporosis Finite Element Analysis Bone Quality Quantitative Ultrasound Mineralization High Resolution Quantitative Computed Tomography |
topic |
Osteoporosis Finite Element Analysis Bone Quality Quantitative Ultrasound Mineralization High Resolution Quantitative Computed Tomography |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.1 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures. Das Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) Konsortium führt experimentelle und klinische Studien zu skelettalen Effekten von Bisphosphonaten durch. Neue diagnostische Verfahren zur Analyse von Wirbelkörperproben von Spendern mit dokumentierter Bisphosphonateinnahme über 0 bis >5 Jahre wurden entwickelt. Mittels thorakolumbaler Quantitativer Computertomographie (QCT) und hochauflösender QCT (HRQCT) wurden Knochenmineraldichte (BMD), Mikrostrukturvariablen und Materialeigenschaften, insbesondere Mineralisierung, untersucht. Finite Element (FE) Modellierung dient der Bestimmung der Wirbelkörperbruchlast. Ein neues Quantitatives Ultraschall (QUS) Gerät zur Messung anisotroper kortikaler Materialeigenschaften wurde konstruiert. Ein signifikanter Zusammenhang von Mineralisierung und (Dauer der) Bisphosphonattherapie konnte mit Mikro-CT und HRQCT nachgewiesen werden. Das thorakolumbale QCT Protokoll ermöglichte eine Dosisreduktion von 60% gegenüber Standardprotokollen. Eine Finite Elemente Analyse zeigte BMD und Trabekelanzahl als unabhängige Determinanten der Bruchlast. Mit dem neuen QUS Gerät konnte die akustische Anisotropie von Referenzmaterialien bestimmt werden. Die Daten dokumentieren erweitere Diagnosemöglichkeiten zur Abschätzung von Knochenfragilität durch die neuen Verfahren. Parallel durchgeführte klinische Studien sollen die Frage der optimalen Dauer von Bisphosphonattherapie klären. Fil: Glüer, Claus C.. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Krausse, Matthias. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania. Universitat Hamburg; Alemania Fil: Museyko, Oleg. Universität Erlangen. Institut für Medizinische Physik; Alemania Fil: Wulff, Birgit. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania Fil: Campbell, Graeme. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Damm, Timo. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Daugschies, Melanie. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Huber, Gerd. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania Fil: Lu, Yongtao. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania Fil: Peña, Jaime. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Waldhausen, Sonja. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Bastgen, Jan. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Rodhe, Kerstin. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Steinebach, Inga. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania Fil: Thomsen, Felix Sebastian Leo. Universitätsklinikum Schleswig-Holstein; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Bahia Blanca; Argentina Fil: Amling, Michael. Universitätsklinikum Hamburg-Eppendorf. Institut für Osteologie und Biomechanik; Alemania Fil: Barkmann, Reinhard. Universitätsklinikum Schleswig-Holstein; Alemania Fil: Engelke, Klaus. Universität Erlangen. Institut für Medizinische Physik; Alemania Fil: Morlock, Michael M.. Technische Universität Hamburg-Harburg. Institut für Biomechanik; Alemania Fil: Pfeilschifter, Johannes. Alfried Krupp Krankenhaus Steele. Osteologisches Forschungszentrum Essen; Alemania Fil: Püschel, Klaus. Universitätsklinikum Hamburg-Eppendorf. Institut für Rechtsmedizin; Alemania |
description |
The Biomechanically founded individualised osteoporosis Assessment and treatment (BioAsset) consortium pursues experimental and clinical studies in the context of skeletal effects of bisphosphonate treatment. Here, first results using newly developed diagnostic methods in a set of vertebral bone specimen obtained from donors with documented bisphosphonate history ranging from 0 to more than 5 years of treatment are presented. A new thoracolumbar quantitative computed tomography (QCT) protocol covering T6 to L4 plus high-resolution QCT (HRQCT) assessment of T12 were compared with high-resolution peripheral QCT (HRpQCT) and micro-CT scans of excised specimens serving as gold standard techniques. Finite element (FE) modelling was performed. Material, ultrastructural, and micromechanical properties were tested on a set of single trabeculae obtained from the donor specimens. A newly developed quantitative ultrasound (QUS) device for measuring the anisotropy of cortical material properties was designed and built. The thoracolumbar QCT protocol permitted in situ imaging with good image quality and automated segmentation of vertebral bodies in the whole range from T6 to L4. The duration of bisphosphonate treatment was significantly associated with increased levels of mineralization and this effect could be measured with HRQCT performed on excised specimens. Microstructural parameters contributed to vertebral bone strength modelled by FE analysis independently of bone mineral density. The new QUS scanner permitted measuring the acoustical anisotropy of reference materials. Taken together, these results document that new methods developed in BioAsset permit a more comprehensive assessment of bone fragility. The set of donor specimens with a documented history of bisphosphonate treatment allows for the assessment of the effects of long-term treatment from the organ down to the tissue and material level. These results will ultimately be linked to the parallel clinical study to provide guidance for determining the optimum duration of bisphosphonate treatment to reduce the incidence of osteoporotic fractures. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/11748 Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-248 1019-1291 |
url |
http://hdl.handle.net/11336/11748 |
identifier_str_mv |
Glüer, Claus C.; Krausse, Matthias; Museyko, Oleg; Wulff, Birgit; Campbell, Graeme; et al.; New horizons for the in vivo assessment of major aspects of bone quality: microstructure and material properties assessed by Quantitative Computed Tomography and Quantitative Ultrasound methods developed by the BioAsset consortium; Schattauer Gmbh-verlag Medizin Naturwissenschaften; Osteologie; 22; 3; 7-2013; 169-248 1019-1291 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.schattauer.de/en/magazine/subject-areas/journals-a-z/osteology/contents/archive/issue/1788/manuscript/20255.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Schattauer Gmbh-verlag Medizin Naturwissenschaften |
publisher.none.fl_str_mv |
Schattauer Gmbh-verlag Medizin Naturwissenschaften |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270055681753088 |
score |
13.13397 |