Non-linear stability analysis of imperfect thin-walled composite beams
- Autores
- Machado, Sebastián Pablo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of initial imperfections. A simple approach is used for determining the influence of imperfection on the buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A geometrically non-linear theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field. An initial displacement, either in vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results are presented for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the postbuckling response obtained with the present beam model is compared with the results obtained with a shell finite element model (Abaqus). © 2009 Elsevier Ltd. All rights reserved.
Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina - Materia
-
Imperfection
Non-Linear Behavior
Postbuckling
Ritz Method
Shear Deformable Beam Theory - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/61999
Ver los metadatos del registro completo
| id |
CONICETDig_13c8e56778e6ed70dbfd0b405baba231 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/61999 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Non-linear stability analysis of imperfect thin-walled composite beamsMachado, Sebastián PabloImperfectionNon-Linear BehaviorPostbucklingRitz MethodShear Deformable Beam Theoryhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of initial imperfections. A simple approach is used for determining the influence of imperfection on the buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A geometrically non-linear theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field. An initial displacement, either in vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results are presented for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the postbuckling response obtained with the present beam model is compared with the results obtained with a shell finite element model (Abaqus). © 2009 Elsevier Ltd. All rights reserved.Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; ArgentinaPergamon-Elsevier Science Ltd2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61999Machado, Sebastián Pablo; Non-linear stability analysis of imperfect thin-walled composite beams; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 45; 2; 3-2010; 100-1100020-7462CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2009.09.006info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0020746208000036info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:19:43Zoai:ri.conicet.gov.ar:11336/61999instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:19:44.134CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Non-linear stability analysis of imperfect thin-walled composite beams |
| title |
Non-linear stability analysis of imperfect thin-walled composite beams |
| spellingShingle |
Non-linear stability analysis of imperfect thin-walled composite beams Machado, Sebastián Pablo Imperfection Non-Linear Behavior Postbuckling Ritz Method Shear Deformable Beam Theory |
| title_short |
Non-linear stability analysis of imperfect thin-walled composite beams |
| title_full |
Non-linear stability analysis of imperfect thin-walled composite beams |
| title_fullStr |
Non-linear stability analysis of imperfect thin-walled composite beams |
| title_full_unstemmed |
Non-linear stability analysis of imperfect thin-walled composite beams |
| title_sort |
Non-linear stability analysis of imperfect thin-walled composite beams |
| dc.creator.none.fl_str_mv |
Machado, Sebastián Pablo |
| author |
Machado, Sebastián Pablo |
| author_facet |
Machado, Sebastián Pablo |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Imperfection Non-Linear Behavior Postbuckling Ritz Method Shear Deformable Beam Theory |
| topic |
Imperfection Non-Linear Behavior Postbuckling Ritz Method Shear Deformable Beam Theory |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of initial imperfections. A simple approach is used for determining the influence of imperfection on the buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A geometrically non-linear theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field. An initial displacement, either in vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results are presented for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the postbuckling response obtained with the present beam model is compared with the results obtained with a shell finite element model (Abaqus). © 2009 Elsevier Ltd. All rights reserved. Fil: Machado, Sebastián Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Tecnológica Nacional. Facultad Regional Bahía Blanca. Grupo de Análisis de Sistemas Mecánicos; Argentina |
| description |
The static non-linear behavior of thin-walled composite beams is analyzed considering the effect of initial imperfections. A simple approach is used for determining the influence of imperfection on the buckling, prebuckling and postbuckling behavior of thin-walled composite beams. The fundamental and secondary equilibrium paths of perfect and imperfect systems corresponding to a major imperfection are analyzed for the case where the perfect system has a stable symmetric bifurcation point. A geometrically non-linear theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field. An initial displacement, either in vertical or horizontal plane, is considered in presence of initial geometric imperfection. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results are presented for a simply supported beam subjected to axial or lateral load. It is shown in the examples that a major imperfection reduces the load-carrying capacity of thin-walled beams. The influence of this effect is analyzed for different fiber orientation angle of a symmetric balanced lamination. In addition, the postbuckling response obtained with the present beam model is compared with the results obtained with a shell finite element model (Abaqus). © 2009 Elsevier Ltd. All rights reserved. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/61999 Machado, Sebastián Pablo; Non-linear stability analysis of imperfect thin-walled composite beams; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 45; 2; 3-2010; 100-110 0020-7462 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/61999 |
| identifier_str_mv |
Machado, Sebastián Pablo; Non-linear stability analysis of imperfect thin-walled composite beams; Pergamon-Elsevier Science Ltd; International Journal Of Non-linear Mechanics; 45; 2; 3-2010; 100-110 0020-7462 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ijnonlinmec.2009.09.006 info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0020746208000036 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782638579253248 |
| score |
12.982451 |