Global models for moving contact lines

Autores
Diez, Javier Alberto; Kondic, L.; Bertozzi, Andrea
Año de publicación
2000
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication approximation, we study the contact line motion using global models where either precursor film or slip are allowed. We show that completely wetting films can be simulated under both conditions without requiring direct tracking of the contact line interface. We perform a comparative study of standard and positivity preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing the best method applicable to two-dimensional problems. We find a considerable computational advantage of the precursor film model over the slipping models.
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Kondic, L.. New Jersey Institute of Technology; Estados Unidos. University of Duke; Estados Unidos
Fil: Bertozzi, Andrea. University of Duke; Estados Unidos
Materia
CONTACT LINES
INSTABILITY
SURFACE TENSION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/128632

id CONICETDig_1363526d91079f5b6a396fcb5b68d4f1
oai_identifier_str oai:ri.conicet.gov.ar:11336/128632
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Global models for moving contact linesDiez, Javier AlbertoKondic, L.Bertozzi, AndreaCONTACT LINESINSTABILITYSURFACE TENSIONhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication approximation, we study the contact line motion using global models where either precursor film or slip are allowed. We show that completely wetting films can be simulated under both conditions without requiring direct tracking of the contact line interface. We perform a comparative study of standard and positivity preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing the best method applicable to two-dimensional problems. We find a considerable computational advantage of the precursor film model over the slipping models.Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; ArgentinaFil: Kondic, L.. New Jersey Institute of Technology; Estados Unidos. University of Duke; Estados UnidosFil: Bertozzi, Andrea. University of Duke; Estados UnidosAmerican Physical Society2000-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128632Diez, Javier Alberto; Kondic, L.; Bertozzi, Andrea; Global models for moving contact lines; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 63; 1; 12-2000; 112081-11208131063-651XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.011208info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.63.011208info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:10Zoai:ri.conicet.gov.ar:11336/128632instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:10.751CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Global models for moving contact lines
title Global models for moving contact lines
spellingShingle Global models for moving contact lines
Diez, Javier Alberto
CONTACT LINES
INSTABILITY
SURFACE TENSION
title_short Global models for moving contact lines
title_full Global models for moving contact lines
title_fullStr Global models for moving contact lines
title_full_unstemmed Global models for moving contact lines
title_sort Global models for moving contact lines
dc.creator.none.fl_str_mv Diez, Javier Alberto
Kondic, L.
Bertozzi, Andrea
author Diez, Javier Alberto
author_facet Diez, Javier Alberto
Kondic, L.
Bertozzi, Andrea
author_role author
author2 Kondic, L.
Bertozzi, Andrea
author2_role author
author
dc.subject.none.fl_str_mv CONTACT LINES
INSTABILITY
SURFACE TENSION
topic CONTACT LINES
INSTABILITY
SURFACE TENSION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication approximation, we study the contact line motion using global models where either precursor film or slip are allowed. We show that completely wetting films can be simulated under both conditions without requiring direct tracking of the contact line interface. We perform a comparative study of standard and positivity preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing the best method applicable to two-dimensional problems. We find a considerable computational advantage of the precursor film model over the slipping models.
Fil: Diez, Javier Alberto. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Ciencias Exactas. Instituto de Física Arroyo Seco; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil; Argentina
Fil: Kondic, L.. New Jersey Institute of Technology; Estados Unidos. University of Duke; Estados Unidos
Fil: Bertozzi, Andrea. University of Duke; Estados Unidos
description We consider thin film flows driven by surface tension and gravity. Within the framework of the lubrication approximation, we study the contact line motion using global models where either precursor film or slip are allowed. We show that completely wetting films can be simulated under both conditions without requiring direct tracking of the contact line interface. We perform a comparative study of standard and positivity preserving numerical methods for these problems in one space dimension, with the ultimate goal of choosing the best method applicable to two-dimensional problems. We find a considerable computational advantage of the precursor film model over the slipping models.
publishDate 2000
dc.date.none.fl_str_mv 2000-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/128632
Diez, Javier Alberto; Kondic, L.; Bertozzi, Andrea; Global models for moving contact lines; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 63; 1; 12-2000; 112081-1120813
1063-651X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/128632
identifier_str_mv Diez, Javier Alberto; Kondic, L.; Bertozzi, Andrea; Global models for moving contact lines; American Physical Society; Physical Review E: Statistical Physics, Plasmas, Fluids and Related Interdisciplinary Topics; 63; 1; 12-2000; 112081-1120813
1063-651X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.011208
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.63.011208
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613735744798720
score 13.070432