Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries

Autores
Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; Patil, Nagaraj; Detrembleur, Christophe; Marcilla, Rebeca; Mecerreyes, David
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).
Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Casado, Nerea. Universidad del País Vasco. Polymat; España
Fil: Goujon, Nicolas. Universidad del País Vasco. Polymat; España
Fil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; España
Fil: Patil, Nagaraj. Instituto Imdea Energia; España
Fil: Detrembleur, Christophe. Universidad de Lieja; Bélgica
Fil: Marcilla, Rebeca. Instituto Imdea Energia; España
Fil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; España
Materia
Proton trap
Redox active
Lithium batteries
Catechol
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/142669

id CONICETDig_132e1b137cb90a005ab30edba5c438e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/142669
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteriesGallastegui, AntonelaMinudri, DanielaCasado, NereaGoujon, NicolasRuipérez, FernandoPatil, NagarajDetrembleur, ChristopheMarcilla, RebecaMecerreyes, DavidProton trapRedox activeLithium batteriesCatecholhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Casado, Nerea. Universidad del País Vasco. Polymat; EspañaFil: Goujon, Nicolas. Universidad del País Vasco. Polymat; EspañaFil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; EspañaFil: Patil, Nagaraj. Instituto Imdea Energia; EspañaFil: Detrembleur, Christophe. Universidad de Lieja; BélgicaFil: Marcilla, Rebeca. Instituto Imdea Energia; EspañaFil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; EspañaRoyal Society of Chemistry2020-08-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142669Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-39422398-4902CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00531Binfo:eu-repo/semantics/altIdentifier/doi/10.1039/D0SE00531Binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:05Zoai:ri.conicet.gov.ar:11336/142669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:06.223CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
title Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
spellingShingle Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
Gallastegui, Antonela
Proton trap
Redox active
Lithium batteries
Catechol
title_short Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
title_full Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
title_fullStr Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
title_full_unstemmed Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
title_sort Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
dc.creator.none.fl_str_mv Gallastegui, Antonela
Minudri, Daniela
Casado, Nerea
Goujon, Nicolas
Ruipérez, Fernando
Patil, Nagaraj
Detrembleur, Christophe
Marcilla, Rebeca
Mecerreyes, David
author Gallastegui, Antonela
author_facet Gallastegui, Antonela
Minudri, Daniela
Casado, Nerea
Goujon, Nicolas
Ruipérez, Fernando
Patil, Nagaraj
Detrembleur, Christophe
Marcilla, Rebeca
Mecerreyes, David
author_role author
author2 Minudri, Daniela
Casado, Nerea
Goujon, Nicolas
Ruipérez, Fernando
Patil, Nagaraj
Detrembleur, Christophe
Marcilla, Rebeca
Mecerreyes, David
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Proton trap
Redox active
Lithium batteries
Catechol
topic Proton trap
Redox active
Lithium batteries
Catechol
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).
Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Casado, Nerea. Universidad del País Vasco. Polymat; España
Fil: Goujon, Nicolas. Universidad del País Vasco. Polymat; España
Fil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; España
Fil: Patil, Nagaraj. Instituto Imdea Energia; España
Fil: Detrembleur, Christophe. Universidad de Lieja; Bélgica
Fil: Marcilla, Rebeca. Instituto Imdea Energia; España
Fil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; España
description Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).
publishDate 2020
dc.date.none.fl_str_mv 2020-08-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/142669
Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-3942
2398-4902
CONICET Digital
CONICET
url http://hdl.handle.net/11336/142669
identifier_str_mv Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-3942
2398-4902
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00531B
info:eu-repo/semantics/altIdentifier/doi/10.1039/D0SE00531B
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614513904582656
score 13.070432