Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries
- Autores
- Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; Patil, Nagaraj; Detrembleur, Christophe; Marcilla, Rebeca; Mecerreyes, David
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).
Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina
Fil: Casado, Nerea. Universidad del País Vasco. Polymat; España
Fil: Goujon, Nicolas. Universidad del País Vasco. Polymat; España
Fil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; España
Fil: Patil, Nagaraj. Instituto Imdea Energia; España
Fil: Detrembleur, Christophe. Universidad de Lieja; Bélgica
Fil: Marcilla, Rebeca. Instituto Imdea Energia; España
Fil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; España - Materia
-
Proton trap
Redox active
Lithium batteries
Catechol - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/142669
Ver los metadatos del registro completo
id |
CONICETDig_132e1b137cb90a005ab30edba5c438e6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/142669 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteriesGallastegui, AntonelaMinudri, DanielaCasado, NereaGoujon, NicolasRuipérez, FernandoPatil, NagarajDetrembleur, ChristopheMarcilla, RebecaMecerreyes, DavidProton trapRedox activeLithium batteriesCatecholhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles).Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; ArgentinaFil: Casado, Nerea. Universidad del País Vasco. Polymat; EspañaFil: Goujon, Nicolas. Universidad del País Vasco. Polymat; EspañaFil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; EspañaFil: Patil, Nagaraj. Instituto Imdea Energia; EspañaFil: Detrembleur, Christophe. Universidad de Lieja; BélgicaFil: Marcilla, Rebeca. Instituto Imdea Energia; EspañaFil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; EspañaRoyal Society of Chemistry2020-08-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/142669Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-39422398-4902CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00531Binfo:eu-repo/semantics/altIdentifier/doi/10.1039/D0SE00531Binfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:05Zoai:ri.conicet.gov.ar:11336/142669instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:06.223CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
title |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
spellingShingle |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries Gallastegui, Antonela Proton trap Redox active Lithium batteries Catechol |
title_short |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
title_full |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
title_fullStr |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
title_full_unstemmed |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
title_sort |
Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries |
dc.creator.none.fl_str_mv |
Gallastegui, Antonela Minudri, Daniela Casado, Nerea Goujon, Nicolas Ruipérez, Fernando Patil, Nagaraj Detrembleur, Christophe Marcilla, Rebeca Mecerreyes, David |
author |
Gallastegui, Antonela |
author_facet |
Gallastegui, Antonela Minudri, Daniela Casado, Nerea Goujon, Nicolas Ruipérez, Fernando Patil, Nagaraj Detrembleur, Christophe Marcilla, Rebeca Mecerreyes, David |
author_role |
author |
author2 |
Minudri, Daniela Casado, Nerea Goujon, Nicolas Ruipérez, Fernando Patil, Nagaraj Detrembleur, Christophe Marcilla, Rebeca Mecerreyes, David |
author2_role |
author author author author author author author author |
dc.subject.none.fl_str_mv |
Proton trap Redox active Lithium batteries Catechol |
topic |
Proton trap Redox active Lithium batteries Catechol |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles). Fil: Gallastegui, Antonela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Minudri, Daniela. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados; Argentina Fil: Casado, Nerea. Universidad del País Vasco. Polymat; España Fil: Goujon, Nicolas. Universidad del País Vasco. Polymat; España Fil: Ruipérez, Fernando. Universidad del País Vasco. Polymat; España Fil: Patil, Nagaraj. Instituto Imdea Energia; España Fil: Detrembleur, Christophe. Universidad de Lieja; Bélgica Fil: Marcilla, Rebeca. Instituto Imdea Energia; España Fil: Mecerreyes, David. Universidad del País Vasco. Polymat; España. Ikerbasque; España |
description |
Organic redox-active materials are actively being searched as a more sustainable alternative to traditional inorganic cathodes used in rechargeable batteries. Among the different types of organic cathodes, redox polymers based on catechol groups show high energy storage capacities. In this article, we show how the introduction of pyridine groups can shift the potential of catechol containing polymers towards more positive values further enhancing their energy storage capacities. For this purpose, we carried out the synthesis of redox-active polymer nanoparticles having catechol and pyridine functionalities. Spherical nanoparticles between 150 and 300 nm were synthesized by a surfactant-free emulsion polymerization method by copolymerization of dopamine methacrylamide and 4-vinyl pyridine. The chemical composition of the nanoparticles was confirmed by FTIR spectroscopy which shows the presence of catechol-pyridine hydrogen bonding. Thermal analyses (DSC, TGA) confirmed the glass transition of the nanoparticles between 158 and 190 °C and high thermal stability with a degradation temperature of 300 °C at 5% weight loss (Td5%). The electrochemical characterization of the redox-active polymer nanoparticles show that the redox potential of the catechol group was not affected by the presence of the pyridine in acidic electrolytes (E1/2 = 0.45 V versus Ag/AgCl). However, in organic electrolytes containing a lithium salt the redox potential of the catechol nanoparticles shifted from 0.27 V for catechol homopolymer, to 0.56 V for the catechol-pyridine copolymer. This positive potential gain could be associated to the proton trap effect as indicated by DFT calculations. Finally, the beneficial effect of the proton trap effect onto the performance of lithium-ion-polymer battery was demonstrated. The lithium vs. polymer cells showed a promising practical high voltage organic cathode (3.45 V vs. Li+/Li), excellent rate performance (up to 120C) and high capacity retention after cycling (74% after 800 cycles). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/142669 Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-3942 2398-4902 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/142669 |
identifier_str_mv |
Gallastegui, Antonela; Minudri, Daniela; Casado, Nerea; Goujon, Nicolas; Ruipérez, Fernando; et al.; Proton trap effect on catechol-pyridine redox polymer nanoparticles as organic electrodes for lithium batteries; Royal Society of Chemistry; Sustainable Energy and Fuels; 4; 8; 2-8-2020; 3934-3942 2398-4902 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00531B info:eu-repo/semantics/altIdentifier/doi/10.1039/D0SE00531B |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Royal Society of Chemistry |
publisher.none.fl_str_mv |
Royal Society of Chemistry |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614513904582656 |
score |
13.070432 |