Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films

Autores
Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.
Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay);
Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay);
Materia
NANOMATERIALS
MESOPOROUS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219767

id CONICETDig_12e0df27354448fa825e2dceeede1eb3
oai_identifier_str oai:ri.conicet.gov.ar:11336/219767
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin filmsCardozo de Oliveira, Edson R.Vensaus, PriscilaSoler Illia, Galo Juan de Avila ArturoLanzillotti Kimura, Norberto DanielNANOMATERIALSMESOPOROUShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay);Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay);Optical Publishing Group2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219767Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715-2159-3930CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2307.15843info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/ome/fulltext.cfm?uri=ome-13-12-3715&id=543988info:eu-repo/semantics/altIdentifier/doi/10.1364/OME.504926info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:01Zoai:ri.conicet.gov.ar:11336/219767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:01.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
title Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
spellingShingle Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
Cardozo de Oliveira, Edson R.
NANOMATERIALS
MESOPOROUS
title_short Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
title_full Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
title_fullStr Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
title_full_unstemmed Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
title_sort Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
dc.creator.none.fl_str_mv Cardozo de Oliveira, Edson R.
Vensaus, Priscila
Soler Illia, Galo Juan de Avila Arturo
Lanzillotti Kimura, Norberto Daniel
author Cardozo de Oliveira, Edson R.
author_facet Cardozo de Oliveira, Edson R.
Vensaus, Priscila
Soler Illia, Galo Juan de Avila Arturo
Lanzillotti Kimura, Norberto Daniel
author_role author
author2 Vensaus, Priscila
Soler Illia, Galo Juan de Avila Arturo
Lanzillotti Kimura, Norberto Daniel
author2_role author
author
author
dc.subject.none.fl_str_mv NANOMATERIALS
MESOPOROUS
topic NANOMATERIALS
MESOPOROUS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.
Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay);
Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay);
description Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.
publishDate 2023
dc.date.none.fl_str_mv 2023-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219767
Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715-
2159-3930
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219767
identifier_str_mv Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715-
2159-3930
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2307.15843
info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/ome/fulltext.cfm?uri=ome-13-12-3715&id=543988
info:eu-repo/semantics/altIdentifier/doi/10.1364/OME.504926
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Optical Publishing Group
publisher.none.fl_str_mv Optical Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980305575608320
score 12.993085