Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films
- Autores
- Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.
Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay);
Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina
Fil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay); - Materia
-
NANOMATERIALS
MESOPOROUS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219767
Ver los metadatos del registro completo
id |
CONICETDig_12e0df27354448fa825e2dceeede1eb3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219767 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin filmsCardozo de Oliveira, Edson R.Vensaus, PriscilaSoler Illia, Galo Juan de Avila ArturoLanzillotti Kimura, Norberto DanielNANOMATERIALSMESOPOROUShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices.Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay);Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; ArgentinaFil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay);Optical Publishing Group2023-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219767Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715-2159-3930CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2307.15843info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/ome/fulltext.cfm?uri=ome-13-12-3715&id=543988info:eu-repo/semantics/altIdentifier/doi/10.1364/OME.504926info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:01Zoai:ri.conicet.gov.ar:11336/219767instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:01.501CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
title |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
spellingShingle |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films Cardozo de Oliveira, Edson R. NANOMATERIALS MESOPOROUS |
title_short |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
title_full |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
title_fullStr |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
title_full_unstemmed |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
title_sort |
Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films |
dc.creator.none.fl_str_mv |
Cardozo de Oliveira, Edson R. Vensaus, Priscila Soler Illia, Galo Juan de Avila Arturo Lanzillotti Kimura, Norberto Daniel |
author |
Cardozo de Oliveira, Edson R. |
author_facet |
Cardozo de Oliveira, Edson R. Vensaus, Priscila Soler Illia, Galo Juan de Avila Arturo Lanzillotti Kimura, Norberto Daniel |
author_role |
author |
author2 |
Vensaus, Priscila Soler Illia, Galo Juan de Avila Arturo Lanzillotti Kimura, Norberto Daniel |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
NANOMATERIALS MESOPOROUS |
topic |
NANOMATERIALS MESOPOROUS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices. Fil: Cardozo de Oliveira, Edson R.. Universite Paris-saclay (universite Paris-saclay); Fil: Vensaus, Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina Fil: Soler Illia, Galo Juan de Avila Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martin. Instituto de Nanosistemas; Argentina Fil: Lanzillotti Kimura, Norberto Daniel. Universite Paris-saclay (universite Paris-saclay); |
description |
Gigahertz acoustic resonators have the potential to advance data processing and quantum communication. However, they are expensive and lack responsiveness to external stimuli, limiting their use in sensing applications. In contrast, low-cost nanoscale mesoporous materials, known for their high surface-to-volume ratio, have shown promise in various applications. We recently demonstrated that mesoporous silicon dioxide (SiO2) and titanium dioxide (TiO2) thin layers can support coherent acoustic modes in the 5 to 100 GHz range. In this study, we propose a new method for designing tunable acoustic resonators using mesoporous thin films on acoustic distributed Bragg reflectors. By infiltrating the pores with different chemicals, the material´s properties could be altered and achieve tunability in the acoustic resonances. We present four device designs and use simulations to predict resonators with Q-factors up to 1000. We also observe that the resonant frequency and intensity show a linear response to relative humidity, with a tunability of up to 60 %. Our platform offers a unique opportunity to design cost-effective nanoacoustic sensing and reconfigurable optoacoustic nanodevices. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219767 Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715- 2159-3930 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219767 |
identifier_str_mv |
Cardozo de Oliveira, Edson R.; Vensaus, Priscila; Soler Illia, Galo Juan de Avila Arturo; Lanzillotti Kimura, Norberto Daniel; Design of cost-effective environment-responsive nanoacoustic devices based on mesoporous thin films; Optical Publishing Group; Optical Materials Express; 13; 12; 11-2023; 3715- 2159-3930 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2307.15843 info:eu-repo/semantics/altIdentifier/url/https://opg.optica.org/ome/fulltext.cfm?uri=ome-13-12-3715&id=543988 info:eu-repo/semantics/altIdentifier/doi/10.1364/OME.504926 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Optical Publishing Group |
publisher.none.fl_str_mv |
Optical Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980305575608320 |
score |
12.993085 |