A Dynamical Model of Kinesin-Microtubule Motility Assays

Autores
Gibbons, Frank; Chauwin, Jean-François; Desposito, Marcelo Arnaldo; José, Jorge V.
Año de publicación
2001
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154–158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.
Fil: Gibbons, Frank. Northeastern University; Estados Unidos
Fil: Chauwin, Jean-François. Northeastern University; Estados Unidos
Fil: Desposito, Marcelo Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: José, Jorge V.. Northeastern University; Estados Unidos
Materia
Molecular Motors
Motility Assays
Microtubules
Stochastic Model
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79252

id CONICETDig_11fcf3ecdc36edc4a7c8a85efe0cf4a3
oai_identifier_str oai:ri.conicet.gov.ar:11336/79252
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A Dynamical Model of Kinesin-Microtubule Motility AssaysGibbons, FrankChauwin, Jean-FrançoisDesposito, Marcelo ArnaldoJosé, Jorge V.Molecular MotorsMotility AssaysMicrotubulesStochastic Modelhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154–158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.Fil: Gibbons, Frank. Northeastern University; Estados UnidosFil: Chauwin, Jean-François. Northeastern University; Estados UnidosFil: Desposito, Marcelo Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: José, Jorge V.. Northeastern University; Estados UnidosCell Press2001-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79252Gibbons, Frank; Chauwin, Jean-François; Desposito, Marcelo Arnaldo; José, Jorge V.; A Dynamical Model of Kinesin-Microtubule Motility Assays; Cell Press; Biophysical Journal; 80; 6; 6-2001; 2515-25260006-3495CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.biophysj.org/cgi/content/full/80/6/2515info:eu-repo/semantics/altIdentifier/url/https://www.cell.com/biophysj/fulltext/S0006-3495(01)76223-6info:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76223-6info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:16Zoai:ri.conicet.gov.ar:11336/79252instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:16.838CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A Dynamical Model of Kinesin-Microtubule Motility Assays
title A Dynamical Model of Kinesin-Microtubule Motility Assays
spellingShingle A Dynamical Model of Kinesin-Microtubule Motility Assays
Gibbons, Frank
Molecular Motors
Motility Assays
Microtubules
Stochastic Model
title_short A Dynamical Model of Kinesin-Microtubule Motility Assays
title_full A Dynamical Model of Kinesin-Microtubule Motility Assays
title_fullStr A Dynamical Model of Kinesin-Microtubule Motility Assays
title_full_unstemmed A Dynamical Model of Kinesin-Microtubule Motility Assays
title_sort A Dynamical Model of Kinesin-Microtubule Motility Assays
dc.creator.none.fl_str_mv Gibbons, Frank
Chauwin, Jean-François
Desposito, Marcelo Arnaldo
José, Jorge V.
author Gibbons, Frank
author_facet Gibbons, Frank
Chauwin, Jean-François
Desposito, Marcelo Arnaldo
José, Jorge V.
author_role author
author2 Chauwin, Jean-François
Desposito, Marcelo Arnaldo
José, Jorge V.
author2_role author
author
author
dc.subject.none.fl_str_mv Molecular Motors
Motility Assays
Microtubules
Stochastic Model
topic Molecular Motors
Motility Assays
Microtubules
Stochastic Model
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154–158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.
Fil: Gibbons, Frank. Northeastern University; Estados Unidos
Fil: Chauwin, Jean-François. Northeastern University; Estados Unidos
Fil: Desposito, Marcelo Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: José, Jorge V.. Northeastern University; Estados Unidos
description A two-dimensional stochastic model for the dynamics of microtubules in gliding-assay experiments is presented here, which includes the viscous drag acting on the moving fiber and the interaction with the kinesins. For this purpose, we model kinesin as a spring, and explicitly use parameter values to characterize the model from experimental data. We numerically compute the mean attachment lifetimes of all motors, the total force exerted on the microtubules at all times, the effects of a distribution in the motor speeds, and also the mean velocity of a microtubule in a gliding assay. We find quantitative agreement with the results of J. Howard, A. J. Hudspeth, and R. D. Vale, Nature. 342:154–158. We perform additional numerical analysis of the individual motors, and show how cancellation of the forces exerted by the many motors creates a resultant longitudinal force much smaller than the maximum force that could be exerted by a single motor. We also examine the effects of inhomogeneities in the motor-speeds. Finally, we present a simple theoretical model for microtubules dynamics in gliding assays. We show that the model can be analytically solved in the limit of few motors attached to the microtubule and in the opposite limit of high motor density. We find that the speed of the microtubule goes like the mean speed of the motors in good quantitative agreement with the experimental and numerical results.
publishDate 2001
dc.date.none.fl_str_mv 2001-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79252
Gibbons, Frank; Chauwin, Jean-François; Desposito, Marcelo Arnaldo; José, Jorge V.; A Dynamical Model of Kinesin-Microtubule Motility Assays; Cell Press; Biophysical Journal; 80; 6; 6-2001; 2515-2526
0006-3495
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79252
identifier_str_mv Gibbons, Frank; Chauwin, Jean-François; Desposito, Marcelo Arnaldo; José, Jorge V.; A Dynamical Model of Kinesin-Microtubule Motility Assays; Cell Press; Biophysical Journal; 80; 6; 6-2001; 2515-2526
0006-3495
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.biophysj.org/cgi/content/full/80/6/2515
info:eu-repo/semantics/altIdentifier/url/https://www.cell.com/biophysj/fulltext/S0006-3495(01)76223-6
info:eu-repo/semantics/altIdentifier/doi/10.1016/S0006-3495(01)76223-6
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cell Press
publisher.none.fl_str_mv Cell Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614359250108416
score 13.070432