Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.

Autores
Di Verniero, Carla; Höcht, Christian; Opezzo, Javier A. W.; Taira, Carlos Alberto
Año de publicación
2007
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
SUMMARY 1. The present study addressed possible changes in the dissociation constant of metoprolol and its inverse agonist activity in spontaneously hypertensive rats (SHR). In addition, a possible correlation between cardiac hypertrophy and the inverse agonist activity of metoprolol was explored. 2. In order to determine the dissociation constant (expressed as the pKb) of metoprolol, a cumulative concentration–response curve to noradrenaline was constructed in the absence or presence of metoprolol (0.1, 1 or 10 mmol/L). In a second experiment, a cumulative concentration–response curve to metoprolol was constructed to determine its inverse agonist activity. 3. The ventricular weight of SHR was significantly greater compared with Wistar-Kyoto (WKY) rats. A rightward shift of the concentration–response curve to noradrenaline was observed in SHR compared with WKY rats. The pKb of metoprolol was smaller in SHR compared with WKY rats (6.35 ± 0.14 vs 6.99 ± 0.12, respectively; P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A signi
Fil: Di Verniero, Carla. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Opezzo, Javier A. W.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
cardiac hypertrophy
chronotropic effect
dissociation constant
inverse agonist activity
metoprolol
spontaneously hypertension
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241726

id CONICETDig_118c43a0f1ec450e97f451dc2cdc42be
oai_identifier_str oai:ri.conicet.gov.ar:11336/241726
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.Di Verniero, CarlaHöcht, ChristianOpezzo, Javier A. W.Taira, Carlos Albertocardiac hypertrophychronotropic effectdissociation constantinverse agonist activitymetoprololspontaneously hypertensionhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3SUMMARY 1. The present study addressed possible changes in the dissociation constant of metoprolol and its inverse agonist activity in spontaneously hypertensive rats (SHR). In addition, a possible correlation between cardiac hypertrophy and the inverse agonist activity of metoprolol was explored. 2. In order to determine the dissociation constant (expressed as the pKb) of metoprolol, a cumulative concentration–response curve to noradrenaline was constructed in the absence or presence of metoprolol (0.1, 1 or 10 mmol/L). In a second experiment, a cumulative concentration–response curve to metoprolol was constructed to determine its inverse agonist activity. 3. The ventricular weight of SHR was significantly greater compared with Wistar-Kyoto (WKY) rats. A rightward shift of the concentration–response curve to noradrenaline was observed in SHR compared with WKY rats. The pKb of metoprolol was smaller in SHR compared with WKY rats (6.35 ± 0.14 vs 6.99 ± 0.12, respectively; P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A signiFil: Di Verniero, Carla. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Opezzo, Javier A. W.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaWiley Blackwell Publishing, Inc2007-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241726Di Verniero, Carla; Höcht, Christian; Opezzo, Javier A. W.; Taira, Carlos Alberto; Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 34; 3; 1-2007; 161-1650305-1870CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1681.2007.04566.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1440-1681.2007.04566.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:41:55Zoai:ri.conicet.gov.ar:11336/241726instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:41:55.676CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
title Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
spellingShingle Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
Di Verniero, Carla
cardiac hypertrophy
chronotropic effect
dissociation constant
inverse agonist activity
metoprolol
spontaneously hypertension
title_short Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
title_full Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
title_fullStr Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
title_full_unstemmed Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
title_sort Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.
dc.creator.none.fl_str_mv Di Verniero, Carla
Höcht, Christian
Opezzo, Javier A. W.
Taira, Carlos Alberto
author Di Verniero, Carla
author_facet Di Verniero, Carla
Höcht, Christian
Opezzo, Javier A. W.
Taira, Carlos Alberto
author_role author
author2 Höcht, Christian
Opezzo, Javier A. W.
Taira, Carlos Alberto
author2_role author
author
author
dc.subject.none.fl_str_mv cardiac hypertrophy
chronotropic effect
dissociation constant
inverse agonist activity
metoprolol
spontaneously hypertension
topic cardiac hypertrophy
chronotropic effect
dissociation constant
inverse agonist activity
metoprolol
spontaneously hypertension
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv SUMMARY 1. The present study addressed possible changes in the dissociation constant of metoprolol and its inverse agonist activity in spontaneously hypertensive rats (SHR). In addition, a possible correlation between cardiac hypertrophy and the inverse agonist activity of metoprolol was explored. 2. In order to determine the dissociation constant (expressed as the pKb) of metoprolol, a cumulative concentration–response curve to noradrenaline was constructed in the absence or presence of metoprolol (0.1, 1 or 10 mmol/L). In a second experiment, a cumulative concentration–response curve to metoprolol was constructed to determine its inverse agonist activity. 3. The ventricular weight of SHR was significantly greater compared with Wistar-Kyoto (WKY) rats. A rightward shift of the concentration–response curve to noradrenaline was observed in SHR compared with WKY rats. The pKb of metoprolol was smaller in SHR compared with WKY rats (6.35 ± 0.14 vs 6.99 ± 0.12, respectively; P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A signi
Fil: Di Verniero, Carla. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Opezzo, Javier A. W.. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina
Fil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description SUMMARY 1. The present study addressed possible changes in the dissociation constant of metoprolol and its inverse agonist activity in spontaneously hypertensive rats (SHR). In addition, a possible correlation between cardiac hypertrophy and the inverse agonist activity of metoprolol was explored. 2. In order to determine the dissociation constant (expressed as the pKb) of metoprolol, a cumulative concentration–response curve to noradrenaline was constructed in the absence or presence of metoprolol (0.1, 1 or 10 mmol/L). In a second experiment, a cumulative concentration–response curve to metoprolol was constructed to determine its inverse agonist activity. 3. The ventricular weight of SHR was significantly greater compared with Wistar-Kyoto (WKY) rats. A rightward shift of the concentration–response curve to noradrenaline was observed in SHR compared with WKY rats. The pKb of metoprolol was smaller in SHR compared with WKY rats (6.35 ± 0.14 vs 6.99 ± 0.12, respectively; P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.P < 0.05). No difference was observed in the maximal response (Emax) of the concentration–time effect of metoprolol in WKY rats and SHR (−29.1 ± 7.1 vs −28.2 ± 8.5%, respectively; n = 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.max. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.= 6 for both). However, the concentration of metoprolol eliciting a half-maximal effect (expressed as the pEC50) was significantly smaller in SHR compared with WKY rats (4.82 ± 0.07 vs 5.29 ± 0.13, respectively; n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.n = 6; P < 0.05). Although a significant correlation (r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A significant correlation between the VW/BW ratio and the inverse agonist potency of metoprolol was found, suggesting a possible link between cardiac hypertrophy and the reduction of the inverse agonist activity of metoprolol.r = – 0.876) between the ventricular weight/bodyweight (VW/ BW) ratio and the pEC50 of the chronotropic effect of metoprolol was found, no relationship (r = – 0.257) was found between the VW/BW ratio and Emax. 4. In summary, the present study provides the first evidence of a change in the in vitro pharmacodynamic properties of metoprolol in SHR. The sympathetic overactivity present in SHR not only reduces the positive chronotropic effect of noradrenaline, but also diminishes the constant dissociation of metoprolol from atrial b1-adrenoceptors and its inverse agonist activity. A signi
publishDate 2007
dc.date.none.fl_str_mv 2007-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241726
Di Verniero, Carla; Höcht, Christian; Opezzo, Javier A. W.; Taira, Carlos Alberto; Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 34; 3; 1-2007; 161-165
0305-1870
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241726
identifier_str_mv Di Verniero, Carla; Höcht, Christian; Opezzo, Javier A. W.; Taira, Carlos Alberto; Changes in the in vitro pharmacodynamic properties of metoprolol in atria isolated from spontaneously hypertensive rats.; Wiley Blackwell Publishing, Inc; Clinical and Experimental Pharmacology and Physiology; 34; 3; 1-2007; 161-165
0305-1870
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1440-1681.2007.04566.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1440-1681.2007.04566.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597608166064128
score 12.976206