Prediction of eye, hair and skin colour in Latin Americans

Autores
Palmal, Sagnik; Kaustubh Adhikari; Mendoza Revilla, Javier; Fuentes Guajardo, Macarena; Silva de Cerqueira, Caio Cesar; Bonfante, Betty; Chacón Duque, Juan Camilo; Sohail, Anood; Hurtadeo, Malena; Villegas, Valeria; Granja, Vanessa; Jaramillo, Claudia; Arias, Williams; Barquera Lozano, Rodrigo; Everardo Martínez, Paola; Gómez Valdés, Jorge; Villamil Ramirez, Hugo; Hünemeier, Tábita; Ramallo, Virginia; Parolin, María Laura; Gonzalez, Rolando Jose; Schüler-Faccini, Lavinia; Bortolini, María Cátira; Acuña Alonzo, Victor; Canizales Quinteros, Samuel; Gallo, Carla; Poletti, Giovanni; Bedoya, Gabriel; Rothhammer, Francisco; Balding, David; Faux, Pierre; Ruiz Linares, Andrés
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Fil: Palmal, Sagnik. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; Francia
Fil: Kaustubh Adhikari. The Open University; Reino Unido. University College London; Estados Unidos
Fil: Mendoza Revilla, Javier. Universidad Peruana Cayetano Heredia; Perú. Institut Pasteur de Paris.; Francia
Fil: Fuentes Guajardo, Macarena. Universidad de Tarapacá; Chile
Fil: Silva de Cerqueira, Caio Cesar. Scientific Police of São Paulo State; Brasil
Fil: Bonfante, Betty. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Chacón Duque, Juan Camilo. Natural History Museum; Reino Unido
Fil: Sohail, Anood. Kinnaird College for Women. Department of Biotechnology; Pakistán
Fil: Hurtadeo, Malena. Universidad Peruana Cayetano Heredia; Perú
Fil: Villegas, Valeria. Universidad Peruana Cayetano Heredia; Perú
Fil: Granja, Vanessa. Universidad Peruana Cayetano Heredia; Perú
Fil: Jaramillo, Claudia. Kinnaird College for Women. Department of Biotechnology; Pakistán. Universidad de Antioquia; Colombia
Fil: Arias, Williams. Universidad de Antioquia; Colombia
Fil: Barquera Lozano, Rodrigo. Instituto Nacional de Antropología e Historia; México. Max Planck Institute for the Science of Human History. Department of Archaeogenetics; Alemania
Fil: Everardo Martínez, Paola. Instituto Nacional de Antropología e Historia; México
Fil: Gómez Valdés, Jorge. Instituto Nacional de Antropología e Historia; México
Fil: Villamil Ramirez, Hugo. Universidad Nacional Autónoma de México; México
Fil: Hünemeier, Tábita. Universidade de Sao Paulo; Brasil
Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Parolin, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; Argentina
Fil: Gonzalez, Rolando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: Schüler-Faccini, Lavinia. Universidade Federal do Rio Grande do Sul, Porto Alegre; Brasil
Fil: Bortolini, María Cátira. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Acuña Alonzo, Victor. Instituto Nacional de Antropología e Historia; México. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México
Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú
Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú
Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia
Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile. Universidad de Chile; Chile
Fil: Balding, David. University College London; Reino Unido. University of Melbourne; Australia
Fil: Faux, Pierre. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Ruiz Linares, Andrés. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia. University College London; Reino Unido. Fudan University; República de China
Materia
ADMIXTURE
DNA PHENOTYPING
EYE-COLOUR
HAIR-COLOUR
LATIN AMERICANS
PIGMENTATION PREDICTION
SKIN-COLOUR
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/148751

id CONICETDig_114233b5b30ca72f43539a8c423280ae
oai_identifier_str oai:ri.conicet.gov.ar:11336/148751
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Prediction of eye, hair and skin colour in Latin AmericansPalmal, SagnikKaustubh AdhikariMendoza Revilla, JavierFuentes Guajardo, MacarenaSilva de Cerqueira, Caio CesarBonfante, BettyChacón Duque, Juan CamiloSohail, AnoodHurtadeo, MalenaVillegas, ValeriaGranja, VanessaJaramillo, ClaudiaArias, WilliamsBarquera Lozano, RodrigoEverardo Martínez, PaolaGómez Valdés, JorgeVillamil Ramirez, HugoHünemeier, TábitaRamallo, VirginiaParolin, María LauraGonzalez, Rolando JoseSchüler-Faccini, LaviniaBortolini, María CátiraAcuña Alonzo, VictorCanizales Quinteros, SamuelGallo, CarlaPoletti, GiovanniBedoya, GabrielRothhammer, FranciscoBalding, DavidFaux, PierreRuiz Linares, AndrésADMIXTUREDNA PHENOTYPINGEYE-COLOURHAIR-COLOURLATIN AMERICANSPIGMENTATION PREDICTIONSKIN-COLOURhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.Fil: Palmal, Sagnik. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; FranciaFil: Kaustubh Adhikari. The Open University; Reino Unido. University College London; Estados UnidosFil: Mendoza Revilla, Javier. Universidad Peruana Cayetano Heredia; Perú. Institut Pasteur de Paris.; FranciaFil: Fuentes Guajardo, Macarena. Universidad de Tarapacá; ChileFil: Silva de Cerqueira, Caio Cesar. Scientific Police of São Paulo State; BrasilFil: Bonfante, Betty. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; FranciaFil: Chacón Duque, Juan Camilo. Natural History Museum; Reino UnidoFil: Sohail, Anood. Kinnaird College for Women. Department of Biotechnology; PakistánFil: Hurtadeo, Malena. Universidad Peruana Cayetano Heredia; PerúFil: Villegas, Valeria. Universidad Peruana Cayetano Heredia; PerúFil: Granja, Vanessa. Universidad Peruana Cayetano Heredia; PerúFil: Jaramillo, Claudia. Kinnaird College for Women. Department of Biotechnology; Pakistán. Universidad de Antioquia; ColombiaFil: Arias, Williams. Universidad de Antioquia; ColombiaFil: Barquera Lozano, Rodrigo. Instituto Nacional de Antropología e Historia; México. Max Planck Institute for the Science of Human History. Department of Archaeogenetics; AlemaniaFil: Everardo Martínez, Paola. Instituto Nacional de Antropología e Historia; MéxicoFil: Gómez Valdés, Jorge. Instituto Nacional de Antropología e Historia; MéxicoFil: Villamil Ramirez, Hugo. Universidad Nacional Autónoma de México; MéxicoFil: Hünemeier, Tábita. Universidade de Sao Paulo; BrasilFil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidade Federal do Rio Grande do Sul; BrasilFil: Parolin, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; ArgentinaFil: Gonzalez, Rolando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; ArgentinaFil: Schüler-Faccini, Lavinia. Universidade Federal do Rio Grande do Sul, Porto Alegre; BrasilFil: Bortolini, María Cátira. Universidade Federal do Rio Grande do Sul; BrasilFil: Acuña Alonzo, Victor. Instituto Nacional de Antropología e Historia; México. Universidade Federal do Rio Grande do Sul; BrasilFil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; MéxicoFil: Gallo, Carla. Universidad Peruana Cayetano Heredia; PerúFil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; PerúFil: Bedoya, Gabriel. Universidad de Antioquia; ColombiaFil: Rothhammer, Francisco. Universidad de Tarapacá; Chile. Universidad de Chile; ChileFil: Balding, David. University College London; Reino Unido. University of Melbourne; AustraliaFil: Faux, Pierre. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; FranciaFil: Ruiz Linares, Andrés. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia. University College London; Reino Unido. Fudan University; República de ChinaElsevier Ireland2021-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/148751Palmal, Sagnik; Kaustubh Adhikari; Mendoza Revilla, Javier; Fuentes Guajardo, Macarena; Silva de Cerqueira, Caio Cesar; et al.; Prediction of eye, hair and skin colour in Latin Americans; Elsevier Ireland; Forensic Science International: Genetics; 53; 7-2021; 1-122041-17231872-4973CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.fsigenetics.com/article/S1872-4973(21)00055-7/fulltextinfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fsigen.2021.102517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:50:47Zoai:ri.conicet.gov.ar:11336/148751instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:50:48.109CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Prediction of eye, hair and skin colour in Latin Americans
title Prediction of eye, hair and skin colour in Latin Americans
spellingShingle Prediction of eye, hair and skin colour in Latin Americans
Palmal, Sagnik
ADMIXTURE
DNA PHENOTYPING
EYE-COLOUR
HAIR-COLOUR
LATIN AMERICANS
PIGMENTATION PREDICTION
SKIN-COLOUR
title_short Prediction of eye, hair and skin colour in Latin Americans
title_full Prediction of eye, hair and skin colour in Latin Americans
title_fullStr Prediction of eye, hair and skin colour in Latin Americans
title_full_unstemmed Prediction of eye, hair and skin colour in Latin Americans
title_sort Prediction of eye, hair and skin colour in Latin Americans
dc.creator.none.fl_str_mv Palmal, Sagnik
Kaustubh Adhikari
Mendoza Revilla, Javier
Fuentes Guajardo, Macarena
Silva de Cerqueira, Caio Cesar
Bonfante, Betty
Chacón Duque, Juan Camilo
Sohail, Anood
Hurtadeo, Malena
Villegas, Valeria
Granja, Vanessa
Jaramillo, Claudia
Arias, Williams
Barquera Lozano, Rodrigo
Everardo Martínez, Paola
Gómez Valdés, Jorge
Villamil Ramirez, Hugo
Hünemeier, Tábita
Ramallo, Virginia
Parolin, María Laura
Gonzalez, Rolando Jose
Schüler-Faccini, Lavinia
Bortolini, María Cátira
Acuña Alonzo, Victor
Canizales Quinteros, Samuel
Gallo, Carla
Poletti, Giovanni
Bedoya, Gabriel
Rothhammer, Francisco
Balding, David
Faux, Pierre
Ruiz Linares, Andrés
author Palmal, Sagnik
author_facet Palmal, Sagnik
Kaustubh Adhikari
Mendoza Revilla, Javier
Fuentes Guajardo, Macarena
Silva de Cerqueira, Caio Cesar
Bonfante, Betty
Chacón Duque, Juan Camilo
Sohail, Anood
Hurtadeo, Malena
Villegas, Valeria
Granja, Vanessa
Jaramillo, Claudia
Arias, Williams
Barquera Lozano, Rodrigo
Everardo Martínez, Paola
Gómez Valdés, Jorge
Villamil Ramirez, Hugo
Hünemeier, Tábita
Ramallo, Virginia
Parolin, María Laura
Gonzalez, Rolando Jose
Schüler-Faccini, Lavinia
Bortolini, María Cátira
Acuña Alonzo, Victor
Canizales Quinteros, Samuel
Gallo, Carla
Poletti, Giovanni
Bedoya, Gabriel
Rothhammer, Francisco
Balding, David
Faux, Pierre
Ruiz Linares, Andrés
author_role author
author2 Kaustubh Adhikari
Mendoza Revilla, Javier
Fuentes Guajardo, Macarena
Silva de Cerqueira, Caio Cesar
Bonfante, Betty
Chacón Duque, Juan Camilo
Sohail, Anood
Hurtadeo, Malena
Villegas, Valeria
Granja, Vanessa
Jaramillo, Claudia
Arias, Williams
Barquera Lozano, Rodrigo
Everardo Martínez, Paola
Gómez Valdés, Jorge
Villamil Ramirez, Hugo
Hünemeier, Tábita
Ramallo, Virginia
Parolin, María Laura
Gonzalez, Rolando Jose
Schüler-Faccini, Lavinia
Bortolini, María Cátira
Acuña Alonzo, Victor
Canizales Quinteros, Samuel
Gallo, Carla
Poletti, Giovanni
Bedoya, Gabriel
Rothhammer, Francisco
Balding, David
Faux, Pierre
Ruiz Linares, Andrés
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ADMIXTURE
DNA PHENOTYPING
EYE-COLOUR
HAIR-COLOUR
LATIN AMERICANS
PIGMENTATION PREDICTION
SKIN-COLOUR
topic ADMIXTURE
DNA PHENOTYPING
EYE-COLOUR
HAIR-COLOUR
LATIN AMERICANS
PIGMENTATION PREDICTION
SKIN-COLOUR
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
Fil: Palmal, Sagnik. Centre National de la Recherche Scientifique; Francia. Aix-Marseille Université; Francia
Fil: Kaustubh Adhikari. The Open University; Reino Unido. University College London; Estados Unidos
Fil: Mendoza Revilla, Javier. Universidad Peruana Cayetano Heredia; Perú. Institut Pasteur de Paris.; Francia
Fil: Fuentes Guajardo, Macarena. Universidad de Tarapacá; Chile
Fil: Silva de Cerqueira, Caio Cesar. Scientific Police of São Paulo State; Brasil
Fil: Bonfante, Betty. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Chacón Duque, Juan Camilo. Natural History Museum; Reino Unido
Fil: Sohail, Anood. Kinnaird College for Women. Department of Biotechnology; Pakistán
Fil: Hurtadeo, Malena. Universidad Peruana Cayetano Heredia; Perú
Fil: Villegas, Valeria. Universidad Peruana Cayetano Heredia; Perú
Fil: Granja, Vanessa. Universidad Peruana Cayetano Heredia; Perú
Fil: Jaramillo, Claudia. Kinnaird College for Women. Department of Biotechnology; Pakistán. Universidad de Antioquia; Colombia
Fil: Arias, Williams. Universidad de Antioquia; Colombia
Fil: Barquera Lozano, Rodrigo. Instituto Nacional de Antropología e Historia; México. Max Planck Institute for the Science of Human History. Department of Archaeogenetics; Alemania
Fil: Everardo Martínez, Paola. Instituto Nacional de Antropología e Historia; México
Fil: Gómez Valdés, Jorge. Instituto Nacional de Antropología e Historia; México
Fil: Villamil Ramirez, Hugo. Universidad Nacional Autónoma de México; México
Fil: Hünemeier, Tábita. Universidade de Sao Paulo; Brasil
Fil: Ramallo, Virginia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Parolin, María Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Diversidad y Evolución Austral; Argentina
Fil: Gonzalez, Rolando Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto Patagónico de Ciencias Sociales y Humanas; Argentina
Fil: Schüler-Faccini, Lavinia. Universidade Federal do Rio Grande do Sul, Porto Alegre; Brasil
Fil: Bortolini, María Cátira. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Acuña Alonzo, Victor. Instituto Nacional de Antropología e Historia; México. Universidade Federal do Rio Grande do Sul; Brasil
Fil: Canizales Quinteros, Samuel. Universidad Nacional Autónoma de México; México
Fil: Gallo, Carla. Universidad Peruana Cayetano Heredia; Perú
Fil: Poletti, Giovanni. Universidad Peruana Cayetano Heredia; Perú
Fil: Bedoya, Gabriel. Universidad de Antioquia; Colombia
Fil: Rothhammer, Francisco. Universidad de Tarapacá; Chile. Universidad de Chile; Chile
Fil: Balding, David. University College London; Reino Unido. University of Melbourne; Australia
Fil: Faux, Pierre. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia
Fil: Ruiz Linares, Andrés. Aix-Marseille Université; Francia. Centre National de la Recherche Scientifique; Francia. University College London; Reino Unido. Fudan University; República de China
description Here we evaluate the accuracy of prediction for eye, hair and skin pigmentation in a dataset of > 6500 individuals from Mexico, Colombia, Peru, Chile and Brazil (including genome-wide SNP data and quantitative/categorical pigmentation phenotypes - the CANDELA dataset CAN). We evaluated accuracy in relation to different analytical methods and various phenotypic predictors. As expected from statistical principles, we observe that quantitative traits are more sensitive to changes in the prediction models than categorical traits. We find that Random Forest or Linear Regression are generally the best performing methods. We also compare the prediction accuracy of SNP sets defined in the CAN dataset (including 56, 101 and 120 SNPs for eye, hair and skin colour prediction, respectively) to the well-established HIrisPlex-S SNP set (including 6, 22 and 36 SNPs for eye, hair and skin colour prediction respectively). When training prediction models on the CAN data, we observe remarkably similar performances for HIrisPlex-S and the larger CAN SNP sets for the prediction of hair (categorical) and eye (both categorical and quantitative), while the CAN sets outperform HIrisPlex-S for quantitative, but not for categorical skin pigmentation prediction. The performance of HIrisPlex-S, when models are trained in a world-wide sample (although consisting of 80% Europeans, https://hirisplex.erasmusmc.nl), is lower relative to training in the CAN data (particularly for hair and skin colour). Altogether, our observations are consistent with common variation of eye and hair colour having a relatively simple genetic architecture, which is well captured by HIrisPlex-S, even in admixed Latin Americans (with partial European ancestry). By contrast, since skin pigmentation is a more polygenic trait, accuracy is more sensitive to prediction SNP set size, although here this effect was only apparent for a quantitative measure of skin pigmentation. Our results support the use of HIrisPlex-S in the prediction of categorical pigmentation traits for forensic purposes in Latin America, while illustrating the impact of training datasets on its accuracy.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/148751
Palmal, Sagnik; Kaustubh Adhikari; Mendoza Revilla, Javier; Fuentes Guajardo, Macarena; Silva de Cerqueira, Caio Cesar; et al.; Prediction of eye, hair and skin colour in Latin Americans; Elsevier Ireland; Forensic Science International: Genetics; 53; 7-2021; 1-12
2041-1723
1872-4973
CONICET Digital
CONICET
url http://hdl.handle.net/11336/148751
identifier_str_mv Palmal, Sagnik; Kaustubh Adhikari; Mendoza Revilla, Javier; Fuentes Guajardo, Macarena; Silva de Cerqueira, Caio Cesar; et al.; Prediction of eye, hair and skin colour in Latin Americans; Elsevier Ireland; Forensic Science International: Genetics; 53; 7-2021; 1-12
2041-1723
1872-4973
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.fsigenetics.com/article/S1872-4973(21)00055-7/fulltext
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fsigen.2021.102517
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Ireland
publisher.none.fl_str_mv Elsevier Ireland
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613565099540480
score 13.070432