Models of cuspy triaxial stellar systems – IV. Rotating systems
- Autores
- Carpintero, Daniel Diego; Muzzio, Juan Carlos
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semi-axes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two-thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short-axis tubes, while long-axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are also found in the present models. Finally, our frequency maps show empty regions where studies of orbits on fixed potentials found orbits, a likely consequence of the self-consistency of our models that excludes them.
Facultad de Ciencias Astronómicas y Geofísicas
Instituto de Astrofísica de La Plata - Materia
-
Ciencias Astronómicas
methods: numerical
galaxies: elliptical and lenticular, cD
galaxies: kinematics and dynamics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/123896
Ver los metadatos del registro completo
id |
SEDICI_7ff2003fefca3aec6692c1029ba02a21 |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/123896 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Models of cuspy triaxial stellar systems – IV. Rotating systemsCarpintero, Daniel DiegoMuzzio, Juan CarlosCiencias Astronómicasmethods: numericalgalaxies: elliptical and lenticular, cDgalaxies: kinematics and dynamicsWe built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semi-axes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two-thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short-axis tubes, while long-axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are also found in the present models. Finally, our frequency maps show empty regions where studies of orbits on fixed potentials found orbits, a likely consequence of the self-consistency of our models that excludes them.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plata2016info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf1082-1096http://sedici.unlp.edu.ar/handle/10915/123896enginfo:eu-repo/semantics/altIdentifier/issn/0035-8711info:eu-repo/semantics/altIdentifier/issn/1365-2966info:eu-repo/semantics/altIdentifier/arxiv/1603.07829info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw720info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-29T11:29:24Zoai:sedici.unlp.edu.ar:10915/123896Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-29 11:29:24.753SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
title |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
spellingShingle |
Models of cuspy triaxial stellar systems – IV. Rotating systems Carpintero, Daniel Diego Ciencias Astronómicas methods: numerical galaxies: elliptical and lenticular, cD galaxies: kinematics and dynamics |
title_short |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
title_full |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
title_fullStr |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
title_full_unstemmed |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
title_sort |
Models of cuspy triaxial stellar systems – IV. Rotating systems |
dc.creator.none.fl_str_mv |
Carpintero, Daniel Diego Muzzio, Juan Carlos |
author |
Carpintero, Daniel Diego |
author_facet |
Carpintero, Daniel Diego Muzzio, Juan Carlos |
author_role |
author |
author2 |
Muzzio, Juan Carlos |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ciencias Astronómicas methods: numerical galaxies: elliptical and lenticular, cD galaxies: kinematics and dynamics |
topic |
Ciencias Astronómicas methods: numerical galaxies: elliptical and lenticular, cD galaxies: kinematics and dynamics |
dc.description.none.fl_txt_mv |
We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semi-axes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two-thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short-axis tubes, while long-axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are also found in the present models. Finally, our frequency maps show empty regions where studies of orbits on fixed potentials found orbits, a likely consequence of the self-consistency of our models that excludes them. Facultad de Ciencias Astronómicas y Geofísicas Instituto de Astrofísica de La Plata |
description |
We built two self-consistent models of triaxial, cuspy, rotating stellar systems adding rotation to non-rotating models presented in previous papers of this series. The final angular velocity of the material is not constant and varies with the distance to the centre and with the height over the equator of the systems, but the figure rotation is very uniform in both cases. Even though the addition of rotation to the models modifies their original semi-axes ratios, the final rotating models are considerably flattened and triaxial. An analysis of the orbital content of the models shows that about two-thirds of their orbits are chaotic yet the models are very stable over intervals of the order of one Hubble time. The bulk of regular orbits are short-axis tubes, while long-axis tubes are replaced by tubes whose axes lie on the short-long axes plane, but do not coincide with the major axis. Other types of regular orbits that do not appear in non-rotating systems, like horseshoes and orbits that cross themselves, are also found in the present models. Finally, our frequency maps show empty regions where studies of orbits on fixed potentials found orbits, a likely consequence of the self-consistency of our models that excludes them. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/123896 |
url |
http://sedici.unlp.edu.ar/handle/10915/123896 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0035-8711 info:eu-repo/semantics/altIdentifier/issn/1365-2966 info:eu-repo/semantics/altIdentifier/arxiv/1603.07829 info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stw720 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf 1082-1096 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1844616172988792832 |
score |
13.070432 |