A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm
- Autores
- Fresno Rodríguez, Cristóbal; Gonzalez, Germán Alexis; Merino, Gabriela Alejandra; Flesia, Ana Georgina; Podhajcer, Osvaldo Luis; Llera, Andrea Sabina; Fernandez, Elmer Andres
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Results: Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results (n = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions.
Fil: Fresno Rodríguez, Cristóbal. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina
Fil: Gonzalez, Germán Alexis. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina
Fil: Merino, Gabriela Alejandra. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina
Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina
Fil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina
Fil: Fernandez, Elmer Andres. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina - Materia
-
classsificationCLASSIFICATION
REJECTION OPTION
PAM50
MOLECULAR MAKER - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60239
Ver los metadatos del registro completo
id |
CONICETDig_1004529a68b973cf1163309b464cba15 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60239 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithmFresno Rodríguez, CristóbalGonzalez, Germán AlexisMerino, Gabriela AlejandraFlesia, Ana GeorginaPodhajcer, Osvaldo LuisLlera, Andrea SabinaFernandez, Elmer AndresclasssificationCLASSIFICATIONREJECTION OPTIONPAM50MOLECULAR MAKERhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Results: Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results (n = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions.Fil: Fresno Rodríguez, Cristóbal. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; ArgentinaFil: Gonzalez, Germán Alexis. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; ArgentinaFil: Merino, Gabriela Alejandra. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; ArgentinaFil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; ArgentinaFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Fernandez, Elmer Andres. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; ArgentinaOxford University Press2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60239Fresno Rodríguez, Cristóbal; Gonzalez, Germán Alexis; Merino, Gabriela Alejandra; Flesia, Ana Georgina; Podhajcer, Osvaldo Luis; et al.; A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm; Oxford University Press; Bioinformatics (Oxford, England); 33; 5; 3-2017; 693-7001367-48031460-2059CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/33/5/693/2849457info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btw704info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:17Zoai:ri.conicet.gov.ar:11336/60239instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:17.621CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
title |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
spellingShingle |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm Fresno Rodríguez, Cristóbal classsificationCLASSIFICATION REJECTION OPTION PAM50 MOLECULAR MAKER |
title_short |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
title_full |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
title_fullStr |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
title_full_unstemmed |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
title_sort |
A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm |
dc.creator.none.fl_str_mv |
Fresno Rodríguez, Cristóbal Gonzalez, Germán Alexis Merino, Gabriela Alejandra Flesia, Ana Georgina Podhajcer, Osvaldo Luis Llera, Andrea Sabina Fernandez, Elmer Andres |
author |
Fresno Rodríguez, Cristóbal |
author_facet |
Fresno Rodríguez, Cristóbal Gonzalez, Germán Alexis Merino, Gabriela Alejandra Flesia, Ana Georgina Podhajcer, Osvaldo Luis Llera, Andrea Sabina Fernandez, Elmer Andres |
author_role |
author |
author2 |
Gonzalez, Germán Alexis Merino, Gabriela Alejandra Flesia, Ana Georgina Podhajcer, Osvaldo Luis Llera, Andrea Sabina Fernandez, Elmer Andres |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
classsificationCLASSIFICATION REJECTION OPTION PAM50 MOLECULAR MAKER |
topic |
classsificationCLASSIFICATION REJECTION OPTION PAM50 MOLECULAR MAKER |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Results: Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results (n = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions. Fil: Fresno Rodríguez, Cristóbal. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina Fil: Gonzalez, Germán Alexis. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina Fil: Merino, Gabriela Alejandra. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Probabilidad y Estadística; Argentina Fil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina Fil: Fernandez, Elmer Andres. Area de Cs. Agrarias, Ingeniería, Cs. Biológicas y de la Salud de la Universidad Catolica de Córdoba; Argentina |
description |
The PAM50 classifier is used to assign patients to the highest correlated breast cancer subtype irrespectively of the obtained value. Nonetheless, all subtype correlations are required to build the risk of recurrence (ROR) score, currently used in therapeutic decisions. Present subtype uncertainty estimations are not accurate, seldom considered or require a population-based approach for this context. Results: Here we present a novel single-subject non-parametric uncertainty estimation based on PAM50's gene label permutations. Simulations results (n = 5228) showed that only 61% subjects can be reliably 'Assigned' to the PAM50 subtype, whereas 33% should be 'Not Assigned' (NA), leaving the rest to tight 'Ambiguous' correlations between subtypes. The NA subjects exclusion from the analysis improved survival subtype curves discrimination yielding a higher proportion of low and high ROR values. Conversely, all NA subjects showed similar survival behaviour regardless of the original PAM50 assignment. We propose to incorporate our PAM50 uncertainty estimation to support therapeutic decisions. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60239 Fresno Rodríguez, Cristóbal; Gonzalez, Germán Alexis; Merino, Gabriela Alejandra; Flesia, Ana Georgina; Podhajcer, Osvaldo Luis; et al.; A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm; Oxford University Press; Bioinformatics (Oxford, England); 33; 5; 3-2017; 693-700 1367-4803 1460-2059 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/60239 |
identifier_str_mv |
Fresno Rodríguez, Cristóbal; Gonzalez, Germán Alexis; Merino, Gabriela Alejandra; Flesia, Ana Georgina; Podhajcer, Osvaldo Luis; et al.; A novel non-parametric method for uncertainty evaluation of correlation-based molecular signatures: Its application on PAM50 algorithm; Oxford University Press; Bioinformatics (Oxford, England); 33; 5; 3-2017; 693-700 1367-4803 1460-2059 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/bioinformatics/article/33/5/693/2849457 info:eu-repo/semantics/altIdentifier/doi/10.1093/bioinformatics/btw704 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613667806511104 |
score |
13.070432 |