Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm

Autores
Zeida Camacho, Ari Fernando; Babbush, Ryan; González Lebrero, Mariano Camilo; Trujillo, Madia; Radi, Rafael; Estrin, Dario Ariel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The oxidation of cellular thiol-containing compounds, such as glutathione and protein Cys residues, is considered to play an important role in many biological processes. Among possible oxidants, hydrogen peroxide (H 2O 2) is known to be produced in many cell types as a response to a variety of extracellular stimuli and could work as an intracellular messenger. This reaction has been reported to proceed through a S N2 mechanism, but despite its importance, the reaction is not completely understood at the atomic level. In this work, we elucidate the reaction mechanism of thiol oxidation by H 2O 2 for a model methanethiolate system using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results show that the solvent plays a key role in positioning the reactants, that there is a significant charge redistribution in the first stages of the reaction, and that there is a hydrogen transfer process between H 2O 2 oxygen atoms that occurs after reaching the transition state. These observations challenge the S N2 mechanism hypothesis for this reaction. Specifically, our results indicate that the reaction is driven by a tendency of the slightly charged peroxidatic oxygen to become even more negative in the product via an electrophilic attack on the negative sulfur atom. This is inconsistent with the S N2 mechanism, which predicts a protonated sulfenic acid and hydroxyl anion as stable intermediates. These intermediates are not found. Instead, the reaction proceeds directly to unprotonated sulfenic acid and water.
Fil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Babbush, Ryan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina
Fil: Trujillo, Madia. Universidad de la República; Uruguay
Fil: Radi, Rafael. Universidad de la República; Uruguay
Fil: Estrin, Dario Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Peroxiredoxins
Cysteine
Computer Simulation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/83998

id CONICETDig_0f3eb4c090adeca20b021adb9c21d98b
oai_identifier_str oai:ri.conicet.gov.ar:11336/83998
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigmZeida Camacho, Ari FernandoBabbush, RyanGonzález Lebrero, Mariano CamiloTrujillo, MadiaRadi, RafaelEstrin, Dario ArielPeroxiredoxinsCysteineComputer Simulationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The oxidation of cellular thiol-containing compounds, such as glutathione and protein Cys residues, is considered to play an important role in many biological processes. Among possible oxidants, hydrogen peroxide (H 2O 2) is known to be produced in many cell types as a response to a variety of extracellular stimuli and could work as an intracellular messenger. This reaction has been reported to proceed through a S N2 mechanism, but despite its importance, the reaction is not completely understood at the atomic level. In this work, we elucidate the reaction mechanism of thiol oxidation by H 2O 2 for a model methanethiolate system using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results show that the solvent plays a key role in positioning the reactants, that there is a significant charge redistribution in the first stages of the reaction, and that there is a hydrogen transfer process between H 2O 2 oxygen atoms that occurs after reaching the transition state. These observations challenge the S N2 mechanism hypothesis for this reaction. Specifically, our results indicate that the reaction is driven by a tendency of the slightly charged peroxidatic oxygen to become even more negative in the product via an electrophilic attack on the negative sulfur atom. This is inconsistent with the S N2 mechanism, which predicts a protonated sulfenic acid and hydroxyl anion as stable intermediates. These intermediates are not found. Instead, the reaction proceeds directly to unprotonated sulfenic acid and water.Fil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Babbush, Ryan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Trujillo, Madia. Universidad de la República; UruguayFil: Radi, Rafael. Universidad de la República; UruguayFil: Estrin, Dario Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaAmerican Chemical Society2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/83998Zeida Camacho, Ari Fernando; Babbush, Ryan; González Lebrero, Mariano Camilo; Trujillo, Madia; Radi, Rafael; et al.; Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm; American Chemical Society; Chemical Research In Toxicology (Washington); 25; 3; 3-2012; 741-7460893-228XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/tx200540zinfo:eu-repo/semantics/altIdentifier/doi/10.1021/tx200540zinfo:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308630/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:07:40Zoai:ri.conicet.gov.ar:11336/83998instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:07:40.942CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
title Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
spellingShingle Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
Zeida Camacho, Ari Fernando
Peroxiredoxins
Cysteine
Computer Simulation
title_short Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
title_full Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
title_fullStr Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
title_full_unstemmed Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
title_sort Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm
dc.creator.none.fl_str_mv Zeida Camacho, Ari Fernando
Babbush, Ryan
González Lebrero, Mariano Camilo
Trujillo, Madia
Radi, Rafael
Estrin, Dario Ariel
author Zeida Camacho, Ari Fernando
author_facet Zeida Camacho, Ari Fernando
Babbush, Ryan
González Lebrero, Mariano Camilo
Trujillo, Madia
Radi, Rafael
Estrin, Dario Ariel
author_role author
author2 Babbush, Ryan
González Lebrero, Mariano Camilo
Trujillo, Madia
Radi, Rafael
Estrin, Dario Ariel
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Peroxiredoxins
Cysteine
Computer Simulation
topic Peroxiredoxins
Cysteine
Computer Simulation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The oxidation of cellular thiol-containing compounds, such as glutathione and protein Cys residues, is considered to play an important role in many biological processes. Among possible oxidants, hydrogen peroxide (H 2O 2) is known to be produced in many cell types as a response to a variety of extracellular stimuli and could work as an intracellular messenger. This reaction has been reported to proceed through a S N2 mechanism, but despite its importance, the reaction is not completely understood at the atomic level. In this work, we elucidate the reaction mechanism of thiol oxidation by H 2O 2 for a model methanethiolate system using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results show that the solvent plays a key role in positioning the reactants, that there is a significant charge redistribution in the first stages of the reaction, and that there is a hydrogen transfer process between H 2O 2 oxygen atoms that occurs after reaching the transition state. These observations challenge the S N2 mechanism hypothesis for this reaction. Specifically, our results indicate that the reaction is driven by a tendency of the slightly charged peroxidatic oxygen to become even more negative in the product via an electrophilic attack on the negative sulfur atom. This is inconsistent with the S N2 mechanism, which predicts a protonated sulfenic acid and hydroxyl anion as stable intermediates. These intermediates are not found. Instead, the reaction proceeds directly to unprotonated sulfenic acid and water.
Fil: Zeida Camacho, Ari Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: Babbush, Ryan. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina
Fil: González Lebrero, Mariano Camilo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentina
Fil: Trujillo, Madia. Universidad de la República; Uruguay
Fil: Radi, Rafael. Universidad de la República; Uruguay
Fil: Estrin, Dario Ariel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description The oxidation of cellular thiol-containing compounds, such as glutathione and protein Cys residues, is considered to play an important role in many biological processes. Among possible oxidants, hydrogen peroxide (H 2O 2) is known to be produced in many cell types as a response to a variety of extracellular stimuli and could work as an intracellular messenger. This reaction has been reported to proceed through a S N2 mechanism, but despite its importance, the reaction is not completely understood at the atomic level. In this work, we elucidate the reaction mechanism of thiol oxidation by H 2O 2 for a model methanethiolate system using state of the art hybrid quantum-classical (QM-MM) molecular dynamics simulations. Our results show that the solvent plays a key role in positioning the reactants, that there is a significant charge redistribution in the first stages of the reaction, and that there is a hydrogen transfer process between H 2O 2 oxygen atoms that occurs after reaching the transition state. These observations challenge the S N2 mechanism hypothesis for this reaction. Specifically, our results indicate that the reaction is driven by a tendency of the slightly charged peroxidatic oxygen to become even more negative in the product via an electrophilic attack on the negative sulfur atom. This is inconsistent with the S N2 mechanism, which predicts a protonated sulfenic acid and hydroxyl anion as stable intermediates. These intermediates are not found. Instead, the reaction proceeds directly to unprotonated sulfenic acid and water.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/83998
Zeida Camacho, Ari Fernando; Babbush, Ryan; González Lebrero, Mariano Camilo; Trujillo, Madia; Radi, Rafael; et al.; Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm; American Chemical Society; Chemical Research In Toxicology (Washington); 25; 3; 3-2012; 741-746
0893-228X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/83998
identifier_str_mv Zeida Camacho, Ari Fernando; Babbush, Ryan; González Lebrero, Mariano Camilo; Trujillo, Madia; Radi, Rafael; et al.; Molecular basis of the mechanism of thiol oxidation by hydrogen peroxide in aqueous solution: Challenging the SN2 paradigm; American Chemical Society; Chemical Research In Toxicology (Washington); 25; 3; 3-2012; 741-746
0893-228X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/tx200540z
info:eu-repo/semantics/altIdentifier/doi/10.1021/tx200540z
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308630/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980348677324800
score 12.993085