The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles

Autores
Voltà Durán, Eric; Sanchez, Julieta Maria; López Laguna, Hèctor; Parladé, Eloi; Sánchez García, Laura; Sánchez Chardi, Alejandro; de Marco, Ario; Unzueta, Ugutz; Vázquez, Esther; Villaverde Corrales, Antonio
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Histidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the Hismediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials.
Fil: Voltà Durán, Eric. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Sanchez, Julieta Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: López Laguna, Hèctor. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Parladé, Eloi. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Sánchez García, Laura. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Universitat Internacional de Catalunya; España
Fil: Sánchez Chardi, Alejandro. Universitat Autònoma de Barcelona; España. Universidad de Barcelona; España
Fil: de Marco, Ario. University of Nova Gorica; Eslovenia
Fil: Unzueta, Ugutz. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Biomedical Research Institute Sant Pau; España
Fil: Vázquez, Esther. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Villaverde Corrales, Antonio. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Materia
RECOMBINANT PROTEINS
SELF-ASSEMBLING
PROTEIN MATERIALS
NANOPARTICLES
BIOMATERIALS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/167309

id CONICETDig_0f1a65bb5e57f83decc5188b2821f166
oai_identifier_str oai:ri.conicet.gov.ar:11336/167309
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticlesVoltà Durán, EricSanchez, Julieta MariaLópez Laguna, HèctorParladé, EloiSánchez García, LauraSánchez Chardi, Alejandrode Marco, ArioUnzueta, UgutzVázquez, EstherVillaverde Corrales, AntonioRECOMBINANT PROTEINSSELF-ASSEMBLINGPROTEIN MATERIALSNANOPARTICLESBIOMATERIALShttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Histidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the Hismediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials.Fil: Voltà Durán, Eric. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaFil: Sanchez, Julieta Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaFil: López Laguna, Hèctor. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaFil: Parladé, Eloi. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaFil: Sánchez García, Laura. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Universitat Internacional de Catalunya; EspañaFil: Sánchez Chardi, Alejandro. Universitat Autònoma de Barcelona; España. Universidad de Barcelona; EspañaFil: de Marco, Ario. University of Nova Gorica; EsloveniaFil: Unzueta, Ugutz. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Biomedical Research Institute Sant Pau; EspañaFil: Vázquez, Esther. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaFil: Villaverde Corrales, Antonio. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; EspañaSpringer2022-06-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/167309Voltà Durán, Eric; Sanchez, Julieta Maria; López Laguna, Hèctor; Parladé, Eloi; Sánchez García, Laura; et al.; The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles; Springer; Science China Materials; 65; 6; 17-6-2022; 1662-16702095-82262199-4501CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s40843-021-1914-0info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40843-021-1914-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:58:01Zoai:ri.conicet.gov.ar:11336/167309instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:58:02.214CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
title The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
spellingShingle The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
Voltà Durán, Eric
RECOMBINANT PROTEINS
SELF-ASSEMBLING
PROTEIN MATERIALS
NANOPARTICLES
BIOMATERIALS
title_short The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
title_full The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
title_fullStr The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
title_full_unstemmed The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
title_sort The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles
dc.creator.none.fl_str_mv Voltà Durán, Eric
Sanchez, Julieta Maria
López Laguna, Hèctor
Parladé, Eloi
Sánchez García, Laura
Sánchez Chardi, Alejandro
de Marco, Ario
Unzueta, Ugutz
Vázquez, Esther
Villaverde Corrales, Antonio
author Voltà Durán, Eric
author_facet Voltà Durán, Eric
Sanchez, Julieta Maria
López Laguna, Hèctor
Parladé, Eloi
Sánchez García, Laura
Sánchez Chardi, Alejandro
de Marco, Ario
Unzueta, Ugutz
Vázquez, Esther
Villaverde Corrales, Antonio
author_role author
author2 Sanchez, Julieta Maria
López Laguna, Hèctor
Parladé, Eloi
Sánchez García, Laura
Sánchez Chardi, Alejandro
de Marco, Ario
Unzueta, Ugutz
Vázquez, Esther
Villaverde Corrales, Antonio
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv RECOMBINANT PROTEINS
SELF-ASSEMBLING
PROTEIN MATERIALS
NANOPARTICLES
BIOMATERIALS
topic RECOMBINANT PROTEINS
SELF-ASSEMBLING
PROTEIN MATERIALS
NANOPARTICLES
BIOMATERIALS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.10
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Histidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the Hismediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials.
Fil: Voltà Durán, Eric. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Sanchez, Julieta Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: López Laguna, Hèctor. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Parladé, Eloi. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Sánchez García, Laura. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Universitat Internacional de Catalunya; España
Fil: Sánchez Chardi, Alejandro. Universitat Autònoma de Barcelona; España. Universidad de Barcelona; España
Fil: de Marco, Ario. University of Nova Gorica; Eslovenia
Fil: Unzueta, Ugutz. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España. Biomedical Research Institute Sant Pau; España
Fil: Vázquez, Esther. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
Fil: Villaverde Corrales, Antonio. Universitat Autònoma de Barcelona; España. Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina; España
description Histidine-rich peptides confer self-assembling properties to recombinant proteins through the supramolecular coordination with divalent cations. This fact allows the cost-effective, large-scale generation of microscopic and macroscopic protein materials with intriguing biomedical properties. Among such materials, resulting from the simple bioproduction of protein building blocks, homomeric nanoparticles are of special value as multivalent interactors and drug carriers. Interestingly, we have here identified that the assembly of a given His-tagged protein might render distinguishable categories of self-assembling protein nanoparticles. This fact has been scrutinized through the nanobody-containing fusion proteins EM1-GFP-H6 and A3C8-GFP-H6, whose biosynthesis results in two distinguishable populations of building blocks. In one of them, the assembling and disassembling is controllable by cations. However, a second population immediately self-assembles upon purification through a non-regulatable pathway, rendering larger nanoparticles with specific biological properties. The structural analyses of both model proteins and nanoparticles revealed important conformational variability in the building blocks. This fact renders different structural and functional categories of the final soft materials resulting from the participation of energetically unstable intermediates in the oligomerization process. These data illustrate the complexity of the Hismediated protein assembling in recombinant proteins but they also offer clues for a better design and refinement of protein-based nanomedicines, which, resulting from biological fabrication, show an architectonic flexibility unusual among biomaterials.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-17
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/167309
Voltà Durán, Eric; Sanchez, Julieta Maria; López Laguna, Hèctor; Parladé, Eloi; Sánchez García, Laura; et al.; The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles; Springer; Science China Materials; 65; 6; 17-6-2022; 1662-1670
2095-8226
2199-4501
CONICET Digital
CONICET
url http://hdl.handle.net/11336/167309
identifier_str_mv Voltà Durán, Eric; Sanchez, Julieta Maria; López Laguna, Hèctor; Parladé, Eloi; Sánchez García, Laura; et al.; The spectrum of building block conformers sustains the biophysical properties of clinically-oriented self-assembling protein nanoparticles; Springer; Science China Materials; 65; 6; 17-6-2022; 1662-1670
2095-8226
2199-4501
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s40843-021-1914-0
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s40843-021-1914-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613732240457728
score 13.070432