Reconciliation of quantum local master equations with thermodynamics

Autores
De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; Roncaglia, Augusto Jose; Antezza, Mauro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; Irlanda
Fil: Landini, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Hewgill, Adam. The Queens University of Belfast; Irlanda
Fil: Reid, Brendan. The Queens University of Belfast; Irlanda
Fil: Ferraro, Alessandro. The Queens University of Belfast; Irlanda
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; Francia
Materia
MASTER EQUATIONS
OPEN QUANTUM SYSTEMS
QUANTUM HARMONIC OSCILLATORS
QUANTUM THERMODYNAMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98683

id CONICETDig_0ec6afcbb545c5e951cd22df7bf12587
oai_identifier_str oai:ri.conicet.gov.ar:11336/98683
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Reconciliation of quantum local master equations with thermodynamicsDe Chiara, GabrieleLandini, GabrielHewgill, AdamReid, BrendanFerraro, AlessandroRoncaglia, Augusto JoseAntezza, MauroMASTER EQUATIONSOPEN QUANTUM SYSTEMSQUANTUM HARMONIC OSCILLATORSQUANTUM THERMODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; IrlandaFil: Landini, Gabriel. Universidade de Sao Paulo; BrasilFil: Hewgill, Adam. The Queens University of Belfast; IrlandaFil: Reid, Brendan. The Queens University of Belfast; IrlandaFil: Ferraro, Alessandro. The Queens University of Belfast; IrlandaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; FranciaIOP Publishing2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98683De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-1130291367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aaeceeinfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/aaeceeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:05Zoai:ri.conicet.gov.ar:11336/98683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:05.213CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Reconciliation of quantum local master equations with thermodynamics
title Reconciliation of quantum local master equations with thermodynamics
spellingShingle Reconciliation of quantum local master equations with thermodynamics
De Chiara, Gabriele
MASTER EQUATIONS
OPEN QUANTUM SYSTEMS
QUANTUM HARMONIC OSCILLATORS
QUANTUM THERMODYNAMICS
title_short Reconciliation of quantum local master equations with thermodynamics
title_full Reconciliation of quantum local master equations with thermodynamics
title_fullStr Reconciliation of quantum local master equations with thermodynamics
title_full_unstemmed Reconciliation of quantum local master equations with thermodynamics
title_sort Reconciliation of quantum local master equations with thermodynamics
dc.creator.none.fl_str_mv De Chiara, Gabriele
Landini, Gabriel
Hewgill, Adam
Reid, Brendan
Ferraro, Alessandro
Roncaglia, Augusto Jose
Antezza, Mauro
author De Chiara, Gabriele
author_facet De Chiara, Gabriele
Landini, Gabriel
Hewgill, Adam
Reid, Brendan
Ferraro, Alessandro
Roncaglia, Augusto Jose
Antezza, Mauro
author_role author
author2 Landini, Gabriel
Hewgill, Adam
Reid, Brendan
Ferraro, Alessandro
Roncaglia, Augusto Jose
Antezza, Mauro
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv MASTER EQUATIONS
OPEN QUANTUM SYSTEMS
QUANTUM HARMONIC OSCILLATORS
QUANTUM THERMODYNAMICS
topic MASTER EQUATIONS
OPEN QUANTUM SYSTEMS
QUANTUM HARMONIC OSCILLATORS
QUANTUM THERMODYNAMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; Irlanda
Fil: Landini, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Hewgill, Adam. The Queens University of Belfast; Irlanda
Fil: Reid, Brendan. The Queens University of Belfast; Irlanda
Fil: Ferraro, Alessandro. The Queens University of Belfast; Irlanda
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; Francia
description The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98683
De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-113029
1367-2630
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98683
identifier_str_mv De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-113029
1367-2630
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aaecee
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/aaecee
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268901102059520
score 13.13397