Reconciliation of quantum local master equations with thermodynamics
- Autores
- De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; Roncaglia, Augusto Jose; Antezza, Mauro
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.
Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; Irlanda
Fil: Landini, Gabriel. Universidade de Sao Paulo; Brasil
Fil: Hewgill, Adam. The Queens University of Belfast; Irlanda
Fil: Reid, Brendan. The Queens University of Belfast; Irlanda
Fil: Ferraro, Alessandro. The Queens University of Belfast; Irlanda
Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; Francia - Materia
-
MASTER EQUATIONS
OPEN QUANTUM SYSTEMS
QUANTUM HARMONIC OSCILLATORS
QUANTUM THERMODYNAMICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98683
Ver los metadatos del registro completo
id |
CONICETDig_0ec6afcbb545c5e951cd22df7bf12587 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98683 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Reconciliation of quantum local master equations with thermodynamicsDe Chiara, GabrieleLandini, GabrielHewgill, AdamReid, BrendanFerraro, AlessandroRoncaglia, Augusto JoseAntezza, MauroMASTER EQUATIONSOPEN QUANTUM SYSTEMSQUANTUM HARMONIC OSCILLATORSQUANTUM THERMODYNAMICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics.Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; IrlandaFil: Landini, Gabriel. Universidade de Sao Paulo; BrasilFil: Hewgill, Adam. The Queens University of Belfast; IrlandaFil: Reid, Brendan. The Queens University of Belfast; IrlandaFil: Ferraro, Alessandro. The Queens University of Belfast; IrlandaFil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; FranciaIOP Publishing2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98683De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-1130291367-2630CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aaeceeinfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/aaeceeinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:05Zoai:ri.conicet.gov.ar:11336/98683instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:05.213CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Reconciliation of quantum local master equations with thermodynamics |
title |
Reconciliation of quantum local master equations with thermodynamics |
spellingShingle |
Reconciliation of quantum local master equations with thermodynamics De Chiara, Gabriele MASTER EQUATIONS OPEN QUANTUM SYSTEMS QUANTUM HARMONIC OSCILLATORS QUANTUM THERMODYNAMICS |
title_short |
Reconciliation of quantum local master equations with thermodynamics |
title_full |
Reconciliation of quantum local master equations with thermodynamics |
title_fullStr |
Reconciliation of quantum local master equations with thermodynamics |
title_full_unstemmed |
Reconciliation of quantum local master equations with thermodynamics |
title_sort |
Reconciliation of quantum local master equations with thermodynamics |
dc.creator.none.fl_str_mv |
De Chiara, Gabriele Landini, Gabriel Hewgill, Adam Reid, Brendan Ferraro, Alessandro Roncaglia, Augusto Jose Antezza, Mauro |
author |
De Chiara, Gabriele |
author_facet |
De Chiara, Gabriele Landini, Gabriel Hewgill, Adam Reid, Brendan Ferraro, Alessandro Roncaglia, Augusto Jose Antezza, Mauro |
author_role |
author |
author2 |
Landini, Gabriel Hewgill, Adam Reid, Brendan Ferraro, Alessandro Roncaglia, Augusto Jose Antezza, Mauro |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
MASTER EQUATIONS OPEN QUANTUM SYSTEMS QUANTUM HARMONIC OSCILLATORS QUANTUM THERMODYNAMICS |
topic |
MASTER EQUATIONS OPEN QUANTUM SYSTEMS QUANTUM HARMONIC OSCILLATORS QUANTUM THERMODYNAMICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics. Fil: De Chiara, Gabriele. University of California; Estados Unidos. The Queens University of Belfast; Irlanda Fil: Landini, Gabriel. Universidade de Sao Paulo; Brasil Fil: Hewgill, Adam. The Queens University of Belfast; Irlanda Fil: Reid, Brendan. The Queens University of Belfast; Irlanda Fil: Ferraro, Alessandro. The Queens University of Belfast; Irlanda Fil: Roncaglia, Augusto Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Antezza, Mauro. University of California; Estados Unidos. Université Montpellier II; Francia |
description |
The study of open quantum systems often relies on approximate master equations derived under the assumptions of weak coupling to the environment. However when the system is made of several interacting subsystems such a derivation is in many cases very hard. An alternative method, employed especially in the modeling of transport in mesoscopic systems, consists in using local master equations (LMEs) containing Lindblad operators acting locally only on the corresponding subsystem. It has been shown that this approach however generates inconsistencies with the laws of thermodynamics. In this paper we demonstrate that using a microscopic model of LMEs based on repeated collisions all thermodynamic inconsistencies can be resolved by correctly taking into account the breaking of global detailed balance related to the work cost of maintaining the collisions. We provide examples based on a chain of quantum harmonic oscillators whose ends are connected to thermal reservoirs at different temperatures. We prove that this system behaves precisely as a quantum heat engine or refrigerator, with properties that are fully consistent with basic thermodynamics. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98683 De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-113029 1367-2630 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98683 |
identifier_str_mv |
De Chiara, Gabriele; Landini, Gabriel; Hewgill, Adam; Reid, Brendan; Ferraro, Alessandro; et al.; Reconciliation of quantum local master equations with thermodynamics; IOP Publishing; New Journal of Physics; 20; 11; 11-2018; 113024-113029 1367-2630 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1367-2630/aaecee info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1367-2630/aaecee |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268901102059520 |
score |
13.13397 |