Linearizing well quasi-orders and bounding the length of bad sequences
- Autores
- Abriola, Sergio Alejandro; Figueira, Santiago; Senno, Gabriel Ignacio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the length functions of controlled bad sequences over some well quasi-orders (wqo's) and classify them in the Fast Growing Hierarchy. We develop a new and self-contained study of the length of bad sequences over the disjoint product in Nn (Dickson's Lemma), which leads to recently discovered upper bounds but through a simpler argument. We also give a tight upper bound for the length of controlled decreasing sequences of multisets of Nn with the underlying lexicographic ordering, and use it to give an upper bound for the length of controlled bad sequences in the majoring ordering with the underlying disjoint product ordering. We apply this last result to attain complexity upper bounds for the emptiness problem of itca and atra automata. For the case of the product and majoring wqo's the idea is to linearize bad sequences, i.e. to transform a bad sequence over a wqo into a decreasing one over a well-order, for which upper bounds can be more easily handled.
Fil: Abriola, Sergio Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Senno, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Controlled Bad Sequence
Fast Growing Hierarchy
Lexicographic Ordering
Majoring Ordering
Multiset Ordering
Product Ordering
Well Quasi-Order - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59573
Ver los metadatos del registro completo
id |
CONICETDig_0ec2976b402b69b32bff14f5022122a9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59573 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Linearizing well quasi-orders and bounding the length of bad sequencesAbriola, Sergio AlejandroFigueira, SantiagoSenno, Gabriel IgnacioControlled Bad SequenceFast Growing HierarchyLexicographic OrderingMajoring OrderingMultiset OrderingProduct OrderingWell Quasi-Orderhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the length functions of controlled bad sequences over some well quasi-orders (wqo's) and classify them in the Fast Growing Hierarchy. We develop a new and self-contained study of the length of bad sequences over the disjoint product in Nn (Dickson's Lemma), which leads to recently discovered upper bounds but through a simpler argument. We also give a tight upper bound for the length of controlled decreasing sequences of multisets of Nn with the underlying lexicographic ordering, and use it to give an upper bound for the length of controlled bad sequences in the majoring ordering with the underlying disjoint product ordering. We apply this last result to attain complexity upper bounds for the emptiness problem of itca and atra automata. For the case of the product and majoring wqo's the idea is to linearize bad sequences, i.e. to transform a bad sequence over a wqo into a decreasing one over a well-order, for which upper bounds can be more easily handled.Fil: Abriola, Sergio Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Senno, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59573Abriola, Sergio Alejandro; Figueira, Santiago; Senno, Gabriel Ignacio; Linearizing well quasi-orders and bounding the length of bad sequences; Elsevier Science; Theoretical Computer Science; 603; 10-2015; 3-220304-3975CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397515006337info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2015.07.012info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:56Zoai:ri.conicet.gov.ar:11336/59573instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:56.825CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Linearizing well quasi-orders and bounding the length of bad sequences |
title |
Linearizing well quasi-orders and bounding the length of bad sequences |
spellingShingle |
Linearizing well quasi-orders and bounding the length of bad sequences Abriola, Sergio Alejandro Controlled Bad Sequence Fast Growing Hierarchy Lexicographic Ordering Majoring Ordering Multiset Ordering Product Ordering Well Quasi-Order |
title_short |
Linearizing well quasi-orders and bounding the length of bad sequences |
title_full |
Linearizing well quasi-orders and bounding the length of bad sequences |
title_fullStr |
Linearizing well quasi-orders and bounding the length of bad sequences |
title_full_unstemmed |
Linearizing well quasi-orders and bounding the length of bad sequences |
title_sort |
Linearizing well quasi-orders and bounding the length of bad sequences |
dc.creator.none.fl_str_mv |
Abriola, Sergio Alejandro Figueira, Santiago Senno, Gabriel Ignacio |
author |
Abriola, Sergio Alejandro |
author_facet |
Abriola, Sergio Alejandro Figueira, Santiago Senno, Gabriel Ignacio |
author_role |
author |
author2 |
Figueira, Santiago Senno, Gabriel Ignacio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Controlled Bad Sequence Fast Growing Hierarchy Lexicographic Ordering Majoring Ordering Multiset Ordering Product Ordering Well Quasi-Order |
topic |
Controlled Bad Sequence Fast Growing Hierarchy Lexicographic Ordering Majoring Ordering Multiset Ordering Product Ordering Well Quasi-Order |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the length functions of controlled bad sequences over some well quasi-orders (wqo's) and classify them in the Fast Growing Hierarchy. We develop a new and self-contained study of the length of bad sequences over the disjoint product in Nn (Dickson's Lemma), which leads to recently discovered upper bounds but through a simpler argument. We also give a tight upper bound for the length of controlled decreasing sequences of multisets of Nn with the underlying lexicographic ordering, and use it to give an upper bound for the length of controlled bad sequences in the majoring ordering with the underlying disjoint product ordering. We apply this last result to attain complexity upper bounds for the emptiness problem of itca and atra automata. For the case of the product and majoring wqo's the idea is to linearize bad sequences, i.e. to transform a bad sequence over a wqo into a decreasing one over a well-order, for which upper bounds can be more easily handled. Fil: Abriola, Sergio Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Figueira, Santiago. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Senno, Gabriel Ignacio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the length functions of controlled bad sequences over some well quasi-orders (wqo's) and classify them in the Fast Growing Hierarchy. We develop a new and self-contained study of the length of bad sequences over the disjoint product in Nn (Dickson's Lemma), which leads to recently discovered upper bounds but through a simpler argument. We also give a tight upper bound for the length of controlled decreasing sequences of multisets of Nn with the underlying lexicographic ordering, and use it to give an upper bound for the length of controlled bad sequences in the majoring ordering with the underlying disjoint product ordering. We apply this last result to attain complexity upper bounds for the emptiness problem of itca and atra automata. For the case of the product and majoring wqo's the idea is to linearize bad sequences, i.e. to transform a bad sequence over a wqo into a decreasing one over a well-order, for which upper bounds can be more easily handled. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59573 Abriola, Sergio Alejandro; Figueira, Santiago; Senno, Gabriel Ignacio; Linearizing well quasi-orders and bounding the length of bad sequences; Elsevier Science; Theoretical Computer Science; 603; 10-2015; 3-22 0304-3975 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59573 |
identifier_str_mv |
Abriola, Sergio Alejandro; Figueira, Santiago; Senno, Gabriel Ignacio; Linearizing well quasi-orders and bounding the length of bad sequences; Elsevier Science; Theoretical Computer Science; 603; 10-2015; 3-22 0304-3975 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0304397515006337 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.tcs.2015.07.012 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269611023663104 |
score |
13.13397 |