Efficient large-scale image search with a vocabulary tree
- Autores
- Uriza, Esteban; Gómez Fernández, Francisco Roberto; Rais, Martín
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The task of searching and recognizing objects in images has become an important research topic in the area of image processing and computer vision. Looking for similar images in large datasets given an input query and responding as fast as possible is a very challenging task. In this work the Bag of Features approach is studied, and an implementation of the visual vocabulary tree method from Nist´er and Stew´enius is presented. Images are described using local invariant descriptor techniques and then indexed in a database using an inverted index for further queries. The descriptors are quantized according to a visual vocabulary, creating sparse vectors, which allows to compute very efficiently, for each query, a ranking of similarity for indexed images. The performance of the method is analyzed varying different factors, such as the parameters for the vocabulary tree construction, different techniques of local descriptors extraction and dimensionality reduction with PCA. It can be observed that the retrieval performance increases with a richer vocabulary and decays very slowly as the size of the dataset grows.
Fil: Uriza, Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Gómez Fernández, Francisco Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
Fil: Rais, Martín. Escuela Normal Superior de Cachan; Francia - Materia
-
BAG OF FEATURES
IMAGE PROCESSING
SCALABLE RECOGNITION
VOCABULARY TREE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/92344
Ver los metadatos del registro completo
id |
CONICETDig_0e5cfa208ddc472d11d357a97c54e441 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/92344 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Efficient large-scale image search with a vocabulary treeUriza, EstebanGómez Fernández, Francisco RobertoRais, MartínBAG OF FEATURESIMAGE PROCESSINGSCALABLE RECOGNITIONVOCABULARY TREEhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1The task of searching and recognizing objects in images has become an important research topic in the area of image processing and computer vision. Looking for similar images in large datasets given an input query and responding as fast as possible is a very challenging task. In this work the Bag of Features approach is studied, and an implementation of the visual vocabulary tree method from Nist´er and Stew´enius is presented. Images are described using local invariant descriptor techniques and then indexed in a database using an inverted index for further queries. The descriptors are quantized according to a visual vocabulary, creating sparse vectors, which allows to compute very efficiently, for each query, a ranking of similarity for indexed images. The performance of the method is analyzed varying different factors, such as the parameters for the vocabulary tree construction, different techniques of local descriptors extraction and dimensionality reduction with PCA. It can be observed that the retrieval performance increases with a richer vocabulary and decays very slowly as the size of the dataset grows.Fil: Uriza, Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Gómez Fernández, Francisco Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Rais, Martín. Escuela Normal Superior de Cachan; FranciaCachan2018-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/92344Uriza, Esteban; Gómez Fernández, Francisco Roberto; Rais, Martín; Efficient large-scale image search with a vocabulary tree; Cachan; Image Processing On Line; 8; 2-2018; 71-982105-1232CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.ipol.im/pub/art/2018/199/info:eu-repo/semantics/altIdentifier/doi/10.5201/ipol.2018.199info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:43Zoai:ri.conicet.gov.ar:11336/92344instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:44.204CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Efficient large-scale image search with a vocabulary tree |
title |
Efficient large-scale image search with a vocabulary tree |
spellingShingle |
Efficient large-scale image search with a vocabulary tree Uriza, Esteban BAG OF FEATURES IMAGE PROCESSING SCALABLE RECOGNITION VOCABULARY TREE |
title_short |
Efficient large-scale image search with a vocabulary tree |
title_full |
Efficient large-scale image search with a vocabulary tree |
title_fullStr |
Efficient large-scale image search with a vocabulary tree |
title_full_unstemmed |
Efficient large-scale image search with a vocabulary tree |
title_sort |
Efficient large-scale image search with a vocabulary tree |
dc.creator.none.fl_str_mv |
Uriza, Esteban Gómez Fernández, Francisco Roberto Rais, Martín |
author |
Uriza, Esteban |
author_facet |
Uriza, Esteban Gómez Fernández, Francisco Roberto Rais, Martín |
author_role |
author |
author2 |
Gómez Fernández, Francisco Roberto Rais, Martín |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BAG OF FEATURES IMAGE PROCESSING SCALABLE RECOGNITION VOCABULARY TREE |
topic |
BAG OF FEATURES IMAGE PROCESSING SCALABLE RECOGNITION VOCABULARY TREE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The task of searching and recognizing objects in images has become an important research topic in the area of image processing and computer vision. Looking for similar images in large datasets given an input query and responding as fast as possible is a very challenging task. In this work the Bag of Features approach is studied, and an implementation of the visual vocabulary tree method from Nist´er and Stew´enius is presented. Images are described using local invariant descriptor techniques and then indexed in a database using an inverted index for further queries. The descriptors are quantized according to a visual vocabulary, creating sparse vectors, which allows to compute very efficiently, for each query, a ranking of similarity for indexed images. The performance of the method is analyzed varying different factors, such as the parameters for the vocabulary tree construction, different techniques of local descriptors extraction and dimensionality reduction with PCA. It can be observed that the retrieval performance increases with a richer vocabulary and decays very slowly as the size of the dataset grows. Fil: Uriza, Esteban. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Gómez Fernández, Francisco Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina Fil: Rais, Martín. Escuela Normal Superior de Cachan; Francia |
description |
The task of searching and recognizing objects in images has become an important research topic in the area of image processing and computer vision. Looking for similar images in large datasets given an input query and responding as fast as possible is a very challenging task. In this work the Bag of Features approach is studied, and an implementation of the visual vocabulary tree method from Nist´er and Stew´enius is presented. Images are described using local invariant descriptor techniques and then indexed in a database using an inverted index for further queries. The descriptors are quantized according to a visual vocabulary, creating sparse vectors, which allows to compute very efficiently, for each query, a ranking of similarity for indexed images. The performance of the method is analyzed varying different factors, such as the parameters for the vocabulary tree construction, different techniques of local descriptors extraction and dimensionality reduction with PCA. It can be observed that the retrieval performance increases with a richer vocabulary and decays very slowly as the size of the dataset grows. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/92344 Uriza, Esteban; Gómez Fernández, Francisco Roberto; Rais, Martín; Efficient large-scale image search with a vocabulary tree; Cachan; Image Processing On Line; 8; 2-2018; 71-98 2105-1232 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/92344 |
identifier_str_mv |
Uriza, Esteban; Gómez Fernández, Francisco Roberto; Rais, Martín; Efficient large-scale image search with a vocabulary tree; Cachan; Image Processing On Line; 8; 2-2018; 71-98 2105-1232 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.ipol.im/pub/art/2018/199/ info:eu-repo/semantics/altIdentifier/doi/10.5201/ipol.2018.199 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Cachan |
publisher.none.fl_str_mv |
Cachan |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083505222582272 |
score |
13.22299 |