Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland
- Autores
- Lara, Bruno Daniel; Gandini, Marcelo Luciano
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- NDVI (Normalized Difference Vegetation Index) time-series have beenused for permitting a land surface phenology retrieval but these timeseries are affected by clouds and aerosols,which add noise to the signalsensor. In this sense, several smoothing functions are used to removenoise introduced by undetected clouds and poor atmospheric conditions,but a comparison between methods is still necessary due todisagreements about its performance in the literature. The applicationof a smoothing function is a necessarily previous step to describe landsurface phenology in different ecosystems. The aims of this researchwere to evaluate the consistency of different smoothing functions fromTIMESAT software and their impacts on phenological attributes oftemperate grassland ? a complex mosaic of land uses with naturalvegetated and agricultural regions using NDVI-MODIS time series. Anadaptive Savitzky?Golay (SG) filter, Asymmetric Gaussian (AG) andDouble Logistic (DL) functions to fitting NDVI data were used andtheir performances were assessed using the measures root meansquare error (RMSE), Akaike Information Criterion (AIC), BayesianInformation Criterion (BIC) and bias. Besides, differences on the estimationof the start of the growing season (SOS) and the length of thegrowing season (LOS) were obtained. High and low RMSE over croplandsand grassland were observed for the three smoothing functions;in the rest of the region, the SG filter showed more reliable results.Patterns of difference on the estimation of SOS and LOS between SGfilter and the other two models were randomly distributed, wheredifferences of 20?50 days were found. This study demonstrated thatmethods from TIMESAT software are robust and spatially consistentbut must be carefully used.
Fil: Lara, Bruno Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gandini, Marcelo Luciano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; Argentina - Materia
-
Ndvi Time Series
Land Surface Phenology
Savitzky-Golay Filter
Timesat
Temperate Grassland
Phenological Attributes - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58727
Ver los metadatos del registro completo
id |
CONICETDig_0d6077f67da037863e0d874476fdc27e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58727 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grasslandLara, Bruno DanielGandini, Marcelo LucianoNdvi Time SeriesLand Surface PhenologySavitzky-Golay FilterTimesatTemperate GrasslandPhenological Attributeshttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1NDVI (Normalized Difference Vegetation Index) time-series have beenused for permitting a land surface phenology retrieval but these timeseries are affected by clouds and aerosols,which add noise to the signalsensor. In this sense, several smoothing functions are used to removenoise introduced by undetected clouds and poor atmospheric conditions,but a comparison between methods is still necessary due todisagreements about its performance in the literature. The applicationof a smoothing function is a necessarily previous step to describe landsurface phenology in different ecosystems. The aims of this researchwere to evaluate the consistency of different smoothing functions fromTIMESAT software and their impacts on phenological attributes oftemperate grassland ? a complex mosaic of land uses with naturalvegetated and agricultural regions using NDVI-MODIS time series. Anadaptive Savitzky?Golay (SG) filter, Asymmetric Gaussian (AG) andDouble Logistic (DL) functions to fitting NDVI data were used andtheir performances were assessed using the measures root meansquare error (RMSE), Akaike Information Criterion (AIC), BayesianInformation Criterion (BIC) and bias. Besides, differences on the estimationof the start of the growing season (SOS) and the length of thegrowing season (LOS) were obtained. High and low RMSE over croplandsand grassland were observed for the three smoothing functions;in the rest of the region, the SG filter showed more reliable results.Patterns of difference on the estimation of SOS and LOS between SGfilter and the other two models were randomly distributed, wheredifferences of 20?50 days were found. This study demonstrated thatmethods from TIMESAT software are robust and spatially consistentbut must be carefully used.Fil: Lara, Bruno Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gandini, Marcelo Luciano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; ArgentinaTaylor & Francis2016-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58727Lara, Bruno Daniel; Gandini, Marcelo Luciano; Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland; Taylor & Francis; International Journal of Remote Sensing; 37; 8; 4-2016; 1801-18130143-11611366-5901CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/2150704X.2016.1168945info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/2150704X.2016.1168945info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:09Zoai:ri.conicet.gov.ar:11336/58727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:10.176CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
title |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
spellingShingle |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland Lara, Bruno Daniel Ndvi Time Series Land Surface Phenology Savitzky-Golay Filter Timesat Temperate Grassland Phenological Attributes |
title_short |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
title_full |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
title_fullStr |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
title_full_unstemmed |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
title_sort |
Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland |
dc.creator.none.fl_str_mv |
Lara, Bruno Daniel Gandini, Marcelo Luciano |
author |
Lara, Bruno Daniel |
author_facet |
Lara, Bruno Daniel Gandini, Marcelo Luciano |
author_role |
author |
author2 |
Gandini, Marcelo Luciano |
author2_role |
author |
dc.subject.none.fl_str_mv |
Ndvi Time Series Land Surface Phenology Savitzky-Golay Filter Timesat Temperate Grassland Phenological Attributes |
topic |
Ndvi Time Series Land Surface Phenology Savitzky-Golay Filter Timesat Temperate Grassland Phenological Attributes |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
NDVI (Normalized Difference Vegetation Index) time-series have beenused for permitting a land surface phenology retrieval but these timeseries are affected by clouds and aerosols,which add noise to the signalsensor. In this sense, several smoothing functions are used to removenoise introduced by undetected clouds and poor atmospheric conditions,but a comparison between methods is still necessary due todisagreements about its performance in the literature. The applicationof a smoothing function is a necessarily previous step to describe landsurface phenology in different ecosystems. The aims of this researchwere to evaluate the consistency of different smoothing functions fromTIMESAT software and their impacts on phenological attributes oftemperate grassland ? a complex mosaic of land uses with naturalvegetated and agricultural regions using NDVI-MODIS time series. Anadaptive Savitzky?Golay (SG) filter, Asymmetric Gaussian (AG) andDouble Logistic (DL) functions to fitting NDVI data were used andtheir performances were assessed using the measures root meansquare error (RMSE), Akaike Information Criterion (AIC), BayesianInformation Criterion (BIC) and bias. Besides, differences on the estimationof the start of the growing season (SOS) and the length of thegrowing season (LOS) were obtained. High and low RMSE over croplandsand grassland were observed for the three smoothing functions;in the rest of the region, the SG filter showed more reliable results.Patterns of difference on the estimation of SOS and LOS between SGfilter and the other two models were randomly distributed, wheredifferences of 20?50 days were found. This study demonstrated thatmethods from TIMESAT software are robust and spatially consistentbut must be carefully used. Fil: Lara, Bruno Daniel. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Gandini, Marcelo Luciano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Facultad de Agronomia. Departamento Ciencias Básicas Agronómicas y Biológicas. Laboratorio de Investigación y Servicios En Teledetección de Azul; Argentina |
description |
NDVI (Normalized Difference Vegetation Index) time-series have beenused for permitting a land surface phenology retrieval but these timeseries are affected by clouds and aerosols,which add noise to the signalsensor. In this sense, several smoothing functions are used to removenoise introduced by undetected clouds and poor atmospheric conditions,but a comparison between methods is still necessary due todisagreements about its performance in the literature. The applicationof a smoothing function is a necessarily previous step to describe landsurface phenology in different ecosystems. The aims of this researchwere to evaluate the consistency of different smoothing functions fromTIMESAT software and their impacts on phenological attributes oftemperate grassland ? a complex mosaic of land uses with naturalvegetated and agricultural regions using NDVI-MODIS time series. Anadaptive Savitzky?Golay (SG) filter, Asymmetric Gaussian (AG) andDouble Logistic (DL) functions to fitting NDVI data were used andtheir performances were assessed using the measures root meansquare error (RMSE), Akaike Information Criterion (AIC), BayesianInformation Criterion (BIC) and bias. Besides, differences on the estimationof the start of the growing season (SOS) and the length of thegrowing season (LOS) were obtained. High and low RMSE over croplandsand grassland were observed for the three smoothing functions;in the rest of the region, the SG filter showed more reliable results.Patterns of difference on the estimation of SOS and LOS between SGfilter and the other two models were randomly distributed, wheredifferences of 20?50 days were found. This study demonstrated thatmethods from TIMESAT software are robust and spatially consistentbut must be carefully used. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58727 Lara, Bruno Daniel; Gandini, Marcelo Luciano; Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland; Taylor & Francis; International Journal of Remote Sensing; 37; 8; 4-2016; 1801-1813 0143-1161 1366-5901 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58727 |
identifier_str_mv |
Lara, Bruno Daniel; Gandini, Marcelo Luciano; Assessing the performance of smoothing functions to estimate land surface phenology on temperate grassland; Taylor & Francis; International Journal of Remote Sensing; 37; 8; 4-2016; 1801-1813 0143-1161 1366-5901 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1080/2150704X.2016.1168945 info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/2150704X.2016.1168945 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613092719198208 |
score |
13.070432 |