An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems
- Autores
- Sánchez, Luis Emiliano; Diaz Pace, Jorge Andres; Zunino Suarez, Alejandro Octavio; Moisan, Sabine; Rigault, Jean-Paul
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Background: Feature modeling has been widely used in domain engineering for thedevelopment and configuration of software product lines. A feature model represents the set of possible products or configurations to apply in a given context. Recently, this formalism has been applied to the runtime (re-)configuration of systems with high variability and running in changing contexts. These systems must adapt by updating their component assembly configuration at runtime, while minimizing the impact of such changes on the quality of service. For this reason the selection of a good system configuration is seen as an optimization problem based on quality attribute criteria.Methods:We propose an approach for system adaptation based on the specification,measurement and optimization of quality attribute properties on feature models.Furthermore, we describe its integration into a platform for supporting theself-adaptation of component-based systems. Feature models are annotated withquality attribute properties and metrics, and then an efficient algorithm is used to deal with the optimization problem.Results and conclusions:Two performance properties -- frame processing time andreconfiguration time -- are estimated with our model against measurements obtainedfrom the running system to show the accuracy of metrics on feature models forestimating quality attribute properties. The results show evidence that these metrics are reasonably accurate for measuring performance properties on a realistic component-based computer vision system.
Fil: Sánchez, Luis Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina
Fil: Moisan, Sabine. Institut National de Recherche en Informatique et en Automatique; Francia
Fil: Rigault, Jean-Paul. Institut National de Recherche en Informatique et en Automatique; Francia - Materia
-
FEATURE MODELS
RUNTIME ADAPTATION
QUALITY ATTRIBUTES
OPTIMIZATION
COMPONENT-BASED SOFTWARE ENGINEERING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/58096
Ver los metadatos del registro completo
id |
CONICETDig_0d5af8146004847dd45575de67f7bed3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/58096 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based SystemsSánchez, Luis EmilianoDiaz Pace, Jorge AndresZunino Suarez, Alejandro OctavioMoisan, SabineRigault, Jean-PaulFEATURE MODELSRUNTIME ADAPTATIONQUALITY ATTRIBUTESOPTIMIZATIONCOMPONENT-BASED SOFTWARE ENGINEERINGhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Background: Feature modeling has been widely used in domain engineering for thedevelopment and configuration of software product lines. A feature model represents the set of possible products or configurations to apply in a given context. Recently, this formalism has been applied to the runtime (re-)configuration of systems with high variability and running in changing contexts. These systems must adapt by updating their component assembly configuration at runtime, while minimizing the impact of such changes on the quality of service. For this reason the selection of a good system configuration is seen as an optimization problem based on quality attribute criteria.Methods:We propose an approach for system adaptation based on the specification,measurement and optimization of quality attribute properties on feature models.Furthermore, we describe its integration into a platform for supporting theself-adaptation of component-based systems. Feature models are annotated withquality attribute properties and metrics, and then an efficient algorithm is used to deal with the optimization problem.Results and conclusions:Two performance properties -- frame processing time andreconfiguration time -- are estimated with our model against measurements obtainedfrom the running system to show the accuracy of metrics on feature models forestimating quality attribute properties. The results show evidence that these metrics are reasonably accurate for measuring performance properties on a realistic component-based computer vision system.Fil: Sánchez, Luis Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; ArgentinaFil: Moisan, Sabine. Institut National de Recherche en Informatique et en Automatique; FranciaFil: Rigault, Jean-Paul. Institut National de Recherche en Informatique et en Automatique; FranciaSpringer2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58096Sánchez, Luis Emiliano; Diaz Pace, Jorge Andres; Zunino Suarez, Alejandro Octavio; Moisan, Sabine; Rigault, Jean-Paul; An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems; Springer; Journal of Software Engineering Research and Development; 3; 10; 6-2015; 1-302195-1721CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186/s40411-015-0022-1info:eu-repo/semantics/altIdentifier/doi/10.1186/s40411-015-0022-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:44:00Zoai:ri.conicet.gov.ar:11336/58096instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:44:01.219CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
title |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
spellingShingle |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems Sánchez, Luis Emiliano FEATURE MODELS RUNTIME ADAPTATION QUALITY ATTRIBUTES OPTIMIZATION COMPONENT-BASED SOFTWARE ENGINEERING |
title_short |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
title_full |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
title_fullStr |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
title_full_unstemmed |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
title_sort |
An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems |
dc.creator.none.fl_str_mv |
Sánchez, Luis Emiliano Diaz Pace, Jorge Andres Zunino Suarez, Alejandro Octavio Moisan, Sabine Rigault, Jean-Paul |
author |
Sánchez, Luis Emiliano |
author_facet |
Sánchez, Luis Emiliano Diaz Pace, Jorge Andres Zunino Suarez, Alejandro Octavio Moisan, Sabine Rigault, Jean-Paul |
author_role |
author |
author2 |
Diaz Pace, Jorge Andres Zunino Suarez, Alejandro Octavio Moisan, Sabine Rigault, Jean-Paul |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
FEATURE MODELS RUNTIME ADAPTATION QUALITY ATTRIBUTES OPTIMIZATION COMPONENT-BASED SOFTWARE ENGINEERING |
topic |
FEATURE MODELS RUNTIME ADAPTATION QUALITY ATTRIBUTES OPTIMIZATION COMPONENT-BASED SOFTWARE ENGINEERING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Background: Feature modeling has been widely used in domain engineering for thedevelopment and configuration of software product lines. A feature model represents the set of possible products or configurations to apply in a given context. Recently, this formalism has been applied to the runtime (re-)configuration of systems with high variability and running in changing contexts. These systems must adapt by updating their component assembly configuration at runtime, while minimizing the impact of such changes on the quality of service. For this reason the selection of a good system configuration is seen as an optimization problem based on quality attribute criteria.Methods:We propose an approach for system adaptation based on the specification,measurement and optimization of quality attribute properties on feature models.Furthermore, we describe its integration into a platform for supporting theself-adaptation of component-based systems. Feature models are annotated withquality attribute properties and metrics, and then an efficient algorithm is used to deal with the optimization problem.Results and conclusions:Two performance properties -- frame processing time andreconfiguration time -- are estimated with our model against measurements obtainedfrom the running system to show the accuracy of metrics on feature models forestimating quality attribute properties. The results show evidence that these metrics are reasonably accurate for measuring performance properties on a realistic component-based computer vision system. Fil: Sánchez, Luis Emiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Diaz Pace, Jorge Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Zunino Suarez, Alejandro Octavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Instituto Superior de Ingeniería del Software. Universidad Nacional del Centro de la Provincia de Buenos Aires. Instituto Superior de Ingeniería del Software; Argentina Fil: Moisan, Sabine. Institut National de Recherche en Informatique et en Automatique; Francia Fil: Rigault, Jean-Paul. Institut National de Recherche en Informatique et en Automatique; Francia |
description |
Background: Feature modeling has been widely used in domain engineering for thedevelopment and configuration of software product lines. A feature model represents the set of possible products or configurations to apply in a given context. Recently, this formalism has been applied to the runtime (re-)configuration of systems with high variability and running in changing contexts. These systems must adapt by updating their component assembly configuration at runtime, while minimizing the impact of such changes on the quality of service. For this reason the selection of a good system configuration is seen as an optimization problem based on quality attribute criteria.Methods:We propose an approach for system adaptation based on the specification,measurement and optimization of quality attribute properties on feature models.Furthermore, we describe its integration into a platform for supporting theself-adaptation of component-based systems. Feature models are annotated withquality attribute properties and metrics, and then an efficient algorithm is used to deal with the optimization problem.Results and conclusions:Two performance properties -- frame processing time andreconfiguration time -- are estimated with our model against measurements obtainedfrom the running system to show the accuracy of metrics on feature models forestimating quality attribute properties. The results show evidence that these metrics are reasonably accurate for measuring performance properties on a realistic component-based computer vision system. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/58096 Sánchez, Luis Emiliano; Diaz Pace, Jorge Andres; Zunino Suarez, Alejandro Octavio; Moisan, Sabine; Rigault, Jean-Paul; An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems; Springer; Journal of Software Engineering Research and Development; 3; 10; 6-2015; 1-30 2195-1721 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/58096 |
identifier_str_mv |
Sánchez, Luis Emiliano; Diaz Pace, Jorge Andres; Zunino Suarez, Alejandro Octavio; Moisan, Sabine; Rigault, Jean-Paul; An Approach Based on Feature Models and Quality Criteria for Adapting Component-Based Systems; Springer; Journal of Software Engineering Research and Development; 3; 10; 6-2015; 1-30 2195-1721 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1186/s40411-015-0022-1 info:eu-repo/semantics/altIdentifier/doi/10.1186/s40411-015-0022-1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614476709494784 |
score |
13.070432 |