Liquid film drag out in the presence of molecular forces
- Autores
- Schmidhalter, Ignacio; Cerro, R. L.; Giavedoni, Maria Delia; Saita, Fernando Adolfo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, “Dragging of a liquid by amoving plate,” Acta Physicochim. USSR 17, 42–54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van derWaals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.
Fil: Schmidhalter, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Cerro, R. L.. University of Alabama in Huntsville; Estados Unidos
Fil: Giavedoni, Maria Delia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina - Materia
-
DIP COATING
INTERMOLECULAR FORCES
LANDAU-LEVICH - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8876
Ver los metadatos del registro completo
id |
CONICETDig_0d5acd0161a2889e9611124cd093244e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8876 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Liquid film drag out in the presence of molecular forcesSchmidhalter, IgnacioCerro, R. L.Giavedoni, Maria DeliaSaita, Fernando AdolfoDIP COATINGINTERMOLECULAR FORCESLANDAU-LEVICHhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, “Dragging of a liquid by amoving plate,” Acta Physicochim. USSR 17, 42–54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van derWaals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed.Fil: Schmidhalter, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Cerro, R. L.. University of Alabama in Huntsville; Estados UnidosFil: Giavedoni, Maria Delia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaAmerican Institute Of Physics2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8876Schmidhalter, Ignacio; Cerro, R. L.; Giavedoni, Maria Delia; Saita, Fernando Adolfo; Liquid film drag out in the presence of molecular forces; American Institute Of Physics; Physics of Fluids; 25; 3; 3-2013; 1-13; 0321051070-6631enginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4794972info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/pof2/25/3/10.1063/1.4794972info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:12Zoai:ri.conicet.gov.ar:11336/8876instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:12.467CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Liquid film drag out in the presence of molecular forces |
title |
Liquid film drag out in the presence of molecular forces |
spellingShingle |
Liquid film drag out in the presence of molecular forces Schmidhalter, Ignacio DIP COATING INTERMOLECULAR FORCES LANDAU-LEVICH |
title_short |
Liquid film drag out in the presence of molecular forces |
title_full |
Liquid film drag out in the presence of molecular forces |
title_fullStr |
Liquid film drag out in the presence of molecular forces |
title_full_unstemmed |
Liquid film drag out in the presence of molecular forces |
title_sort |
Liquid film drag out in the presence of molecular forces |
dc.creator.none.fl_str_mv |
Schmidhalter, Ignacio Cerro, R. L. Giavedoni, Maria Delia Saita, Fernando Adolfo |
author |
Schmidhalter, Ignacio |
author_facet |
Schmidhalter, Ignacio Cerro, R. L. Giavedoni, Maria Delia Saita, Fernando Adolfo |
author_role |
author |
author2 |
Cerro, R. L. Giavedoni, Maria Delia Saita, Fernando Adolfo |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
DIP COATING INTERMOLECULAR FORCES LANDAU-LEVICH |
topic |
DIP COATING INTERMOLECULAR FORCES LANDAU-LEVICH |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, “Dragging of a liquid by amoving plate,” Acta Physicochim. USSR 17, 42–54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van derWaals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed. Fil: Schmidhalter, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Cerro, R. L.. University of Alabama in Huntsville; Estados Unidos Fil: Giavedoni, Maria Delia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Saita, Fernando Adolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina |
description |
From a practical as well as a conceptual point of view, one of the most interesting problems of physicochemical hydrodynamics is the drag out of a liquid film by a moving solid out of a pool of liquid. The basic problem, sometimes denoted the Landau-Levich problem [L. Landau and B. Levich, “Dragging of a liquid by amoving plate,” Acta Physicochim. USSR 17, 42–54 (1942)], involves an interesting blend of capillary and viscous forces plus a matching of the static solution for capillary rise with a numerical solution of the film evolution equation, neglecting gravity, on the downstream region of the flow field. The original solution describes experimental data for a wide range of Capillary numbers but fails to match results for large and very small Capillary numbers. Molecular level forces are introduced to create an augmented version of the film evolution equation to show the effect of van derWaals forces at the lower range of Capillary numbers. A closed form solution for static capillary rise, including molecular forces, was matched with a numerical solution of the augmented film evolution equation in the dynamic meniscus region. Molecular forces do not sensibly modify the static capillary rise region, since film thicknesses are larger than the range of influence of van der Waals forces, but are determinant in shaping the downstream dynamic meniscus of the very thin liquid films. As expected, a quantitatively different level of disjoining pressure for different values of molecular constants remains in the very thin liquid film far downstream. Computational results for a wide range of Capillary numbers and Hamaker constants show a clear transition towards a region where the film thickness becomes independent of the coating speed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8876 Schmidhalter, Ignacio; Cerro, R. L.; Giavedoni, Maria Delia; Saita, Fernando Adolfo; Liquid film drag out in the presence of molecular forces; American Institute Of Physics; Physics of Fluids; 25; 3; 3-2013; 1-13; 032105 1070-6631 |
url |
http://hdl.handle.net/11336/8876 |
identifier_str_mv |
Schmidhalter, Ignacio; Cerro, R. L.; Giavedoni, Maria Delia; Saita, Fernando Adolfo; Liquid film drag out in the presence of molecular forces; American Institute Of Physics; Physics of Fluids; 25; 3; 3-2013; 1-13; 032105 1070-6631 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4794972 info:eu-repo/semantics/altIdentifier/url/http://scitation.aip.org/content/aip/journal/pof2/25/3/10.1063/1.4794972 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute Of Physics |
publisher.none.fl_str_mv |
American Institute Of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614358567485440 |
score |
13.070432 |