Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2
- Autores
- Rodríguez Carrillo, Augusto Manuel; Sanservino, Miguel Angel; Gómez, Sofía; Ortiz, Mariela Gisela; Thomas, Jorge Enrique; Visintin, Arnaldo
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lithium-rich oxides (Li1.2Ni0.2Mn0.6O2) were obtained by two synthesis routes: co-precipitation method and solid-state reaction. Both materials showed a high degree of crystallinity, and XRD analysis revealed intense and well-defined signals corresponding to the R3m and C2/m space groups of these types of compounds, with a difference in the cationic order in the hexagonal structure layers. The cycling performances showed an initial discharge capacity of 200 mAh g−1 from the co-precipitated material, against the 150 mAh g−1 obtained from the solid-state reaction route but, unlike the large drop in the discharge capacity of the co-precipitated material after 160 cycles, the material obtained by solid-state reaction provided a slightly constant discharge capacity of ⁓120 mAh g−1 throughout cycling. The high initial discharge capacity of the co-precipitated material may be associated with the activation of the Li2MnO3 phase cycled at 0.2 C between 2.0–4.8 V and 2.0–5.2 V, the better cationic order and wider space between the layers of the LiMO2 phase. Therefore, the electrochemical performance could be directly related to those structural characteristics obtained thorough the selected synthetic procedures.
Fil: Rodríguez Carrillo, Augusto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Sanservino, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Gómez, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Ortiz, Mariela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Thomas, Jorge Enrique. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Visintin, Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina - Materia
-
CATHODE
ELECTROCHEMICAL PERFORMANCE
LI1.2NI0.2MN0.6O2
LITHIUM-ION BATTERY
LITHIUM-RICH OXIDES
SYNTHESIS METHOD - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/202456
Ver los metadatos del registro completo
| id |
CONICETDig_0d545d180d454d8e49b4d738ab7fc41c |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/202456 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2Rodríguez Carrillo, Augusto ManuelSanservino, Miguel AngelGómez, SofíaOrtiz, Mariela GiselaThomas, Jorge EnriqueVisintin, ArnaldoCATHODEELECTROCHEMICAL PERFORMANCELI1.2NI0.2MN0.6O2LITHIUM-ION BATTERYLITHIUM-RICH OXIDESSYNTHESIS METHODhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Lithium-rich oxides (Li1.2Ni0.2Mn0.6O2) were obtained by two synthesis routes: co-precipitation method and solid-state reaction. Both materials showed a high degree of crystallinity, and XRD analysis revealed intense and well-defined signals corresponding to the R3m and C2/m space groups of these types of compounds, with a difference in the cationic order in the hexagonal structure layers. The cycling performances showed an initial discharge capacity of 200 mAh g−1 from the co-precipitated material, against the 150 mAh g−1 obtained from the solid-state reaction route but, unlike the large drop in the discharge capacity of the co-precipitated material after 160 cycles, the material obtained by solid-state reaction provided a slightly constant discharge capacity of ⁓120 mAh g−1 throughout cycling. The high initial discharge capacity of the co-precipitated material may be associated with the activation of the Li2MnO3 phase cycled at 0.2 C between 2.0–4.8 V and 2.0–5.2 V, the better cationic order and wider space between the layers of the LiMO2 phase. Therefore, the electrochemical performance could be directly related to those structural characteristics obtained thorough the selected synthetic procedures.Fil: Rodríguez Carrillo, Augusto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Sanservino, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Gómez, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ortiz, Mariela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Thomas, Jorge Enrique. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Visintin, Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaSpringer2022-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/202456Rodríguez Carrillo, Augusto Manuel; Sanservino, Miguel Angel; Gómez, Sofía; Ortiz, Mariela Gisela; Thomas, Jorge Enrique; et al.; Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2; Springer; Journal of Solid State Electrochemistry (print); 26; 10; 7-2022; 2315-23281432-8488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10008-022-05258-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10008-022-05258-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:13:12Zoai:ri.conicet.gov.ar:11336/202456instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:13:12.552CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| title |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| spellingShingle |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 Rodríguez Carrillo, Augusto Manuel CATHODE ELECTROCHEMICAL PERFORMANCE LI1.2NI0.2MN0.6O2 LITHIUM-ION BATTERY LITHIUM-RICH OXIDES SYNTHESIS METHOD |
| title_short |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| title_full |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| title_fullStr |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| title_full_unstemmed |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| title_sort |
Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2 |
| dc.creator.none.fl_str_mv |
Rodríguez Carrillo, Augusto Manuel Sanservino, Miguel Angel Gómez, Sofía Ortiz, Mariela Gisela Thomas, Jorge Enrique Visintin, Arnaldo |
| author |
Rodríguez Carrillo, Augusto Manuel |
| author_facet |
Rodríguez Carrillo, Augusto Manuel Sanservino, Miguel Angel Gómez, Sofía Ortiz, Mariela Gisela Thomas, Jorge Enrique Visintin, Arnaldo |
| author_role |
author |
| author2 |
Sanservino, Miguel Angel Gómez, Sofía Ortiz, Mariela Gisela Thomas, Jorge Enrique Visintin, Arnaldo |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
CATHODE ELECTROCHEMICAL PERFORMANCE LI1.2NI0.2MN0.6O2 LITHIUM-ION BATTERY LITHIUM-RICH OXIDES SYNTHESIS METHOD |
| topic |
CATHODE ELECTROCHEMICAL PERFORMANCE LI1.2NI0.2MN0.6O2 LITHIUM-ION BATTERY LITHIUM-RICH OXIDES SYNTHESIS METHOD |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Lithium-rich oxides (Li1.2Ni0.2Mn0.6O2) were obtained by two synthesis routes: co-precipitation method and solid-state reaction. Both materials showed a high degree of crystallinity, and XRD analysis revealed intense and well-defined signals corresponding to the R3m and C2/m space groups of these types of compounds, with a difference in the cationic order in the hexagonal structure layers. The cycling performances showed an initial discharge capacity of 200 mAh g−1 from the co-precipitated material, against the 150 mAh g−1 obtained from the solid-state reaction route but, unlike the large drop in the discharge capacity of the co-precipitated material after 160 cycles, the material obtained by solid-state reaction provided a slightly constant discharge capacity of ⁓120 mAh g−1 throughout cycling. The high initial discharge capacity of the co-precipitated material may be associated with the activation of the Li2MnO3 phase cycled at 0.2 C between 2.0–4.8 V and 2.0–5.2 V, the better cationic order and wider space between the layers of the LiMO2 phase. Therefore, the electrochemical performance could be directly related to those structural characteristics obtained thorough the selected synthetic procedures. Fil: Rodríguez Carrillo, Augusto Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Sanservino, Miguel Angel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Gómez, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Ortiz, Mariela Gisela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina Fil: Thomas, Jorge Enrique. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Visintin, Arnaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina |
| description |
Lithium-rich oxides (Li1.2Ni0.2Mn0.6O2) were obtained by two synthesis routes: co-precipitation method and solid-state reaction. Both materials showed a high degree of crystallinity, and XRD analysis revealed intense and well-defined signals corresponding to the R3m and C2/m space groups of these types of compounds, with a difference in the cationic order in the hexagonal structure layers. The cycling performances showed an initial discharge capacity of 200 mAh g−1 from the co-precipitated material, against the 150 mAh g−1 obtained from the solid-state reaction route but, unlike the large drop in the discharge capacity of the co-precipitated material after 160 cycles, the material obtained by solid-state reaction provided a slightly constant discharge capacity of ⁓120 mAh g−1 throughout cycling. The high initial discharge capacity of the co-precipitated material may be associated with the activation of the Li2MnO3 phase cycled at 0.2 C between 2.0–4.8 V and 2.0–5.2 V, the better cationic order and wider space between the layers of the LiMO2 phase. Therefore, the electrochemical performance could be directly related to those structural characteristics obtained thorough the selected synthetic procedures. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/202456 Rodríguez Carrillo, Augusto Manuel; Sanservino, Miguel Angel; Gómez, Sofía; Ortiz, Mariela Gisela; Thomas, Jorge Enrique; et al.; Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2; Springer; Journal of Solid State Electrochemistry (print); 26; 10; 7-2022; 2315-2328 1432-8488 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/202456 |
| identifier_str_mv |
Rodríguez Carrillo, Augusto Manuel; Sanservino, Miguel Angel; Gómez, Sofía; Ortiz, Mariela Gisela; Thomas, Jorge Enrique; et al.; Effect of co-precipitation and solid-state reaction synthesis methods on lithium-rich cathodes Li1.2Ni0.2Mn0.6O2; Springer; Journal of Solid State Electrochemistry (print); 26; 10; 7-2022; 2315-2328 1432-8488 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10008-022-05258-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s10008-022-05258-z |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852334939598487552 |
| score |
12.441415 |