An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae
- Autores
- Jamal, Syed Babar; Hassan, Syed Shah; Tiwari, Sandeep; Viana, Marcus V.; De Jesus Benevides, Leandro; Ullah, Asad; Turjanski, Adrian; Barh, Debmalya; Ghosh, Preetam; Costa, Daniela Arruda; Silva, Artur; Röttger, Richard; Baumbach, Jan; Azevedo, Vasco A. C.
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.
Fil: Jamal, Syed Babar. Universidade Federal de Minas Gerais; Brasil
Fil: Hassan, Syed Shah. Universidade Federal de Minas Gerais; Brasil. University Peshawar; Pakistán
Fil: Tiwari, Sandeep. Universidade Federal de Minas Gerais; Brasil
Fil: Viana, Marcus V.. Universidade Federal de Minas Gerais; Brasil
Fil: De Jesus Benevides, Leandro. Universidade Federal de Minas Gerais; Brasil
Fil: Ullah, Asad. University Peshawar; Pakistán
Fil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina
Fil: Barh, Debmalya. Institute Of Integrative Omics And Applied Biotechnology; India
Fil: Ghosh, Preetam. Virginia Commonwealth University; Estados Unidos
Fil: Costa, Daniela Arruda. Universidade Federal de Minas Gerais; Brasil
Fil: Silva, Artur. Universidade Federal do Pará; Brasil
Fil: Röttger, Richard. University of Southern Denmark; Dinamarca
Fil: Baumbach, Jan. University of Southern Denmark; Dinamarca
Fil: Azevedo, Vasco A. C.. Universidade Federal de Minas Gerais; Brasil - Materia
-
Bioinformatica
GEnomica - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55100
Ver los metadatos del registro completo
id |
CONICETDig_0acd28de5bd2cfbc76183ec30a8a477c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55100 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriaeJamal, Syed BabarHassan, Syed ShahTiwari, SandeepViana, Marcus V.De Jesus Benevides, LeandroUllah, AsadTurjanski, AdrianBarh, DebmalyaGhosh, PreetamCosta, Daniela ArrudaSilva, ArturRöttger, RichardBaumbach, JanAzevedo, Vasco A. C.BioinformaticaGEnomicahttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms.Fil: Jamal, Syed Babar. Universidade Federal de Minas Gerais; BrasilFil: Hassan, Syed Shah. Universidade Federal de Minas Gerais; Brasil. University Peshawar; PakistánFil: Tiwari, Sandeep. Universidade Federal de Minas Gerais; BrasilFil: Viana, Marcus V.. Universidade Federal de Minas Gerais; BrasilFil: De Jesus Benevides, Leandro. Universidade Federal de Minas Gerais; BrasilFil: Ullah, Asad. University Peshawar; PakistánFil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Barh, Debmalya. Institute Of Integrative Omics And Applied Biotechnology; IndiaFil: Ghosh, Preetam. Virginia Commonwealth University; Estados UnidosFil: Costa, Daniela Arruda. Universidade Federal de Minas Gerais; BrasilFil: Silva, Artur. Universidade Federal do Pará; BrasilFil: Röttger, Richard. University of Southern Denmark; DinamarcaFil: Baumbach, Jan. University of Southern Denmark; DinamarcaFil: Azevedo, Vasco A. C.. Universidade Federal de Minas Gerais; BrasilPublic Library of Science2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55100Jamal, Syed Babar; Hassan, Syed Shah; Tiwari, Sandeep; Viana, Marcus V.; De Jesus Benevides, Leandro; et al.; An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae; Public Library of Science; Plos One; 12; 10; 10-2017; 1-251932-6203CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0186401info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186401info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:10Zoai:ri.conicet.gov.ar:11336/55100instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:11.26CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
title |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
spellingShingle |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae Jamal, Syed Babar Bioinformatica GEnomica |
title_short |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
title_full |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
title_fullStr |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
title_full_unstemmed |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
title_sort |
An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae |
dc.creator.none.fl_str_mv |
Jamal, Syed Babar Hassan, Syed Shah Tiwari, Sandeep Viana, Marcus V. De Jesus Benevides, Leandro Ullah, Asad Turjanski, Adrian Barh, Debmalya Ghosh, Preetam Costa, Daniela Arruda Silva, Artur Röttger, Richard Baumbach, Jan Azevedo, Vasco A. C. |
author |
Jamal, Syed Babar |
author_facet |
Jamal, Syed Babar Hassan, Syed Shah Tiwari, Sandeep Viana, Marcus V. De Jesus Benevides, Leandro Ullah, Asad Turjanski, Adrian Barh, Debmalya Ghosh, Preetam Costa, Daniela Arruda Silva, Artur Röttger, Richard Baumbach, Jan Azevedo, Vasco A. C. |
author_role |
author |
author2 |
Hassan, Syed Shah Tiwari, Sandeep Viana, Marcus V. De Jesus Benevides, Leandro Ullah, Asad Turjanski, Adrian Barh, Debmalya Ghosh, Preetam Costa, Daniela Arruda Silva, Artur Röttger, Richard Baumbach, Jan Azevedo, Vasco A. C. |
author2_role |
author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Bioinformatica GEnomica |
topic |
Bioinformatica GEnomica |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms. Fil: Jamal, Syed Babar. Universidade Federal de Minas Gerais; Brasil Fil: Hassan, Syed Shah. Universidade Federal de Minas Gerais; Brasil. University Peshawar; Pakistán Fil: Tiwari, Sandeep. Universidade Federal de Minas Gerais; Brasil Fil: Viana, Marcus V.. Universidade Federal de Minas Gerais; Brasil Fil: De Jesus Benevides, Leandro. Universidade Federal de Minas Gerais; Brasil Fil: Ullah, Asad. University Peshawar; Pakistán Fil: Turjanski, Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; Argentina Fil: Barh, Debmalya. Institute Of Integrative Omics And Applied Biotechnology; India Fil: Ghosh, Preetam. Virginia Commonwealth University; Estados Unidos Fil: Costa, Daniela Arruda. Universidade Federal de Minas Gerais; Brasil Fil: Silva, Artur. Universidade Federal do Pará; Brasil Fil: Röttger, Richard. University of Southern Denmark; Dinamarca Fil: Baumbach, Jan. University of Southern Denmark; Dinamarca Fil: Azevedo, Vasco A. C.. Universidade Federal de Minas Gerais; Brasil |
description |
Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diphtheria infection and once regarded for high mortalities worldwide. The fatality gradually decreased with improved living standards and further alleviated when many immunization programs were introduced. However, numerous drug-resistant strains emerged recently that consequently decreased the efficacy of current therapeutics and vaccines, thereby obliging the scientific community to start investigating new therapeutic targets in pathogenic microorganisms. In this study, our contributions include the prediction of modelome of 13 C. diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were identified by combining the results of pangenomics based core-genome and core-modelome analyses. Further, using subtractive proteomics and modelomics approaches for target identification, a set of 23 proteins was selected as essential for the bacteria. Considering human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and DIP0983) were considered as essential and non-host homologs, and have been subjected to virtual screening using four different compound libraries (extracted from the ZINC database, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The proposed ligand molecules showed favorable interactions, lowered energy values and high complementarity with the predicted targets. Our proposed approach expedites the selection of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vaccines, owing to the fact that some of these targets have already been identified and validated in other organisms. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55100 Jamal, Syed Babar; Hassan, Syed Shah; Tiwari, Sandeep; Viana, Marcus V.; De Jesus Benevides, Leandro; et al.; An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae; Public Library of Science; Plos One; 12; 10; 10-2017; 1-25 1932-6203 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55100 |
identifier_str_mv |
Jamal, Syed Babar; Hassan, Syed Shah; Tiwari, Sandeep; Viana, Marcus V.; De Jesus Benevides, Leandro; et al.; An integrative in-silico approach for therapeutic target identification in the human pathogen Corynebacterium diphtheriae; Public Library of Science; Plos One; 12; 10; 10-2017; 1-25 1932-6203 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1371/journal.pone.0186401 info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186401 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Public Library of Science |
publisher.none.fl_str_mv |
Public Library of Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614391657398272 |
score |
13.070432 |