Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments
- Autores
- Zamarripa, Miguel A.; Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Espuña, Antonio
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This work proposes to improve the tactical decision-making of a supply chain (SC) under an uncertain competition scenario through the use of different optimization criteria, which allows to manage not only the specific objectives of the SC of interest, but also the way how its clients address their selection between different potential suppliers, identifying best market share for the SC of interest and the strategy to attain it. The resulting multi-objective optimization problem has been solved using the ɛ-constraint method in order to approximate the Pareto space of non-dominated solutions while a framework based on game theory is used as a reactive decision making support tool to deal with the uncertainty of the competitive scenario. The use of the proposed system is illustrated through its application to a multi-product, multi-echelon supply chain case study, which is intended to cooperate or to compete with another SC of similar characteristics.
Fil: Zamarripa, Miguel A.. Universidad Politecnica de Catalunya; España
Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina
Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina
Fil: Espuña, Antonio. Universidad Politecnica de Catalunya; España - Materia
-
Supply Chain Management
Multi-Objective Optimization
Game Theory
Competitive Scenarios - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8570
Ver los metadatos del registro completo
id |
CONICETDig_0a738887b3171adeff57b9e2c58b19ee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8570 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environmentsZamarripa, Miguel A.Aguirre, Adrian MarceloMendez, Carlos AlbertoEspuña, AntonioSupply Chain ManagementMulti-Objective OptimizationGame TheoryCompetitive Scenarioshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This work proposes to improve the tactical decision-making of a supply chain (SC) under an uncertain competition scenario through the use of different optimization criteria, which allows to manage not only the specific objectives of the SC of interest, but also the way how its clients address their selection between different potential suppliers, identifying best market share for the SC of interest and the strategy to attain it. The resulting multi-objective optimization problem has been solved using the ɛ-constraint method in order to approximate the Pareto space of non-dominated solutions while a framework based on game theory is used as a reactive decision making support tool to deal with the uncertainty of the competitive scenario. The use of the proposed system is illustrated through its application to a multi-product, multi-echelon supply chain case study, which is intended to cooperate or to compete with another SC of similar characteristics.Fil: Zamarripa, Miguel A.. Universidad Politecnica de Catalunya; EspañaFil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); ArgentinaFil: Espuña, Antonio. Universidad Politecnica de Catalunya; EspañaInst Chemical Engineers2013-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8570Zamarripa, Miguel A.; Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Espuña, Antonio; Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments; Inst Chemical Engineers; Chemical Engineering Research & Design; 91; 8; 6-2013; 1588-16000263-8762enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cherd.2013.06.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263876213002517info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:49Zoai:ri.conicet.gov.ar:11336/8570instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:49.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
title |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
spellingShingle |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments Zamarripa, Miguel A. Supply Chain Management Multi-Objective Optimization Game Theory Competitive Scenarios |
title_short |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
title_full |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
title_fullStr |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
title_full_unstemmed |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
title_sort |
Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments |
dc.creator.none.fl_str_mv |
Zamarripa, Miguel A. Aguirre, Adrian Marcelo Mendez, Carlos Alberto Espuña, Antonio |
author |
Zamarripa, Miguel A. |
author_facet |
Zamarripa, Miguel A. Aguirre, Adrian Marcelo Mendez, Carlos Alberto Espuña, Antonio |
author_role |
author |
author2 |
Aguirre, Adrian Marcelo Mendez, Carlos Alberto Espuña, Antonio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Supply Chain Management Multi-Objective Optimization Game Theory Competitive Scenarios |
topic |
Supply Chain Management Multi-Objective Optimization Game Theory Competitive Scenarios |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This work proposes to improve the tactical decision-making of a supply chain (SC) under an uncertain competition scenario through the use of different optimization criteria, which allows to manage not only the specific objectives of the SC of interest, but also the way how its clients address their selection between different potential suppliers, identifying best market share for the SC of interest and the strategy to attain it. The resulting multi-objective optimization problem has been solved using the ɛ-constraint method in order to approximate the Pareto space of non-dominated solutions while a framework based on game theory is used as a reactive decision making support tool to deal with the uncertainty of the competitive scenario. The use of the proposed system is illustrated through its application to a multi-product, multi-echelon supply chain case study, which is intended to cooperate or to compete with another SC of similar characteristics. Fil: Zamarripa, Miguel A.. Universidad Politecnica de Catalunya; España Fil: Aguirre, Adrian Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química (i); Argentina Fil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química (i); Argentina Fil: Espuña, Antonio. Universidad Politecnica de Catalunya; España |
description |
This work proposes to improve the tactical decision-making of a supply chain (SC) under an uncertain competition scenario through the use of different optimization criteria, which allows to manage not only the specific objectives of the SC of interest, but also the way how its clients address their selection between different potential suppliers, identifying best market share for the SC of interest and the strategy to attain it. The resulting multi-objective optimization problem has been solved using the ɛ-constraint method in order to approximate the Pareto space of non-dominated solutions while a framework based on game theory is used as a reactive decision making support tool to deal with the uncertainty of the competitive scenario. The use of the proposed system is illustrated through its application to a multi-product, multi-echelon supply chain case study, which is intended to cooperate or to compete with another SC of similar characteristics. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8570 Zamarripa, Miguel A.; Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Espuña, Antonio; Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments; Inst Chemical Engineers; Chemical Engineering Research & Design; 91; 8; 6-2013; 1588-1600 0263-8762 |
url |
http://hdl.handle.net/11336/8570 |
identifier_str_mv |
Zamarripa, Miguel A.; Aguirre, Adrian Marcelo; Mendez, Carlos Alberto; Espuña, Antonio; Mathematical programming and game theory optimization-based tool for supply chain planning in cooperative/competitive environments; Inst Chemical Engineers; Chemical Engineering Research & Design; 91; 8; 6-2013; 1588-1600 0263-8762 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cherd.2013.06.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0263876213002517 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Inst Chemical Engineers |
publisher.none.fl_str_mv |
Inst Chemical Engineers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268625815207936 |
score |
13.13397 |