Simulación eficiente de sistemas rígidos y conmutados

Autores
Di Pietro, Franco Nicolás
Año de publicación
2019
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Kofman, Ernesto Javier
Romero, Mónica Elena
Descripción
Las imágenes por resonancia magnética (MRI por sus siglas en inglés) se han constituido como una tecnología que permite estudiar múltiples características de los tejidos in-vivo. En el estudio del cerebro, permiten describir la anatomía, la bioquímica y los cambios metabólicos a lo largo del tiempo. Sin embargo, actualmente no es posible integrar esta información multi-dominio de una forma sistemática, y lo que es más importante, con herramientas que permitan usar esa integración de una forma cuantitativa. Es por ello, que esta tesis presenta el desarrollo y estudio de numerosas técnicas de procesamiento de neuroimágenes para lograr tecnologías robustas que puedan asistir en el diagnóstico y seguimiento de enfermedades neurodegenerativas. Primeramente, se presentan la bases conceptuales para la comprensión de los estudios realizados. Posteriormente, se presentan los desarrollos metodológicos en el procesamiento avanzado de neuroimágenes, a través de los cuales es posible extraer información cuantitativa de las imágenes sin la intervención de un operador. Se presenta un trabajo realizado como introducción a la temática en el cual se logró la eliminación de los tejidos extra-cerebrales en las neuroimágenes y se comparó con otros algoritmos disponibles para resolver ese proceso. Luego, se exponen desarrollos en las tres principales modalidades con las que se ha trabajado, específicamente la imagen estructural (3D T1), imágenes ponderadas por difusión (DWI) e imágenes funcionales (fMRI). Estos desarrollos incluyen la segmentación automatizada de estructuras anátomo-funcionales a través de operaciones basadas en vóxeles y superficies deformables; la extracción de información de la disposición de tractos a partir de las DWI con un especial énfasis en el preprocesamiento para obtener resultados confiables; y dos pipelines para fMRI (uno para el paradigma por bloques y otro para fMRI en reposo) para estudiar la organización funcional del cerebro. Los métodos desarrollados permiten la integración multimodal en el espacio nativo, es decir, utilizando como base de referencia el cerebro del propio sujeto en estudio y no un atlas promedio como la mayoría de las técnicas existentes. En este contexto, se utiliza la segmentación estructural para referenciar los resultados obtenidos a estructuras anatómicas y funcionales comunes entre sujetos, permitiéndose así el estudio tanto individual como de grupos. Posteriormente se presentan diferentes investigaciones, en las cuales este marco metodológico ha sido utilizado para resolver problemas y/o responder preguntas actuales en las neurociencias. A partir de ello se presentan: i) un trabajo sobre el uso de Análisis de Componentes Independientes en fMRI en reposo y la detección automática de redes de conectividad funcional; ii) un estudio de reproducibilidad en conectividad funcional y de cómo, mediante la aplicación de un modelo biofísico, se pueden generar métricas altamente consistentes; iii) se presentan dos trabajos sobre el estudio de la neuroanatomía mediante métodos automatizados en sujetos sanos, estudiando los patrones XI XII de normalidad a lo largo de la vida y también utilizando estos descriptores neuroanatómicos para la detección de la Enfermedad de Alzheimer en el marco de una competencia internacional; y iv) se muestra, en un trabajo realizado en colaboración internacional con tres clínicas especializadas en la detección de demencias, cómo las métricas neuroanatómicas y funcionales pueden ser utilizadas de forma combinada en el diagnóstico de demencia frontotemporal. Finalmente, se presentan conclusiones y proyecciones, haciéndose un balance del recorrido realizado durante el desarrollo de la tesis. Luego se describen proyectos en marcha, que profundizan los estudios presentados, los cuales incluyen (1) mejorar el diagnóstico y detectar el estadío funcional en enfermedades neurodegenerativas, (2) ampliar su uso para la obtención de medidas en múltiples escalas espaciales y (3) aplicar las técnicas en el diagnóstico diferencial, es decir, para diferenciar entre distintas patologías con presentaciones clínicas similares.
In this Thesis, new numerical integration methods for ordinary differential equations are proposed. These methods combine the ideas of classic discrete time and state quantization-based methods. As a first result, we propose an extension to linearly implicit quantized state system algorithms that avoids the appearence of spurious oscillations in the integration of certain stiff systems. Under the detection of oscillations, this algorithm performs a classic method step on a pair of states avoiding the problem. It is shown that the use of this algorithm is particularly useful for the simulation of switched circuits in presence of parasitic components. The second contribution of the Thesis is a mixed algorithm that splits a model so that a subsystem is integrated using quantized state systems methods and the remaining subsystem is integrated with a classic algorithm. This algorithm then exploits the advantages of both approaches, improving the overall simulation performance in several applications, particularly in multidomain problems. Theoretical convergence and stability results for the mixed numerical integration scheme are also obtained. In addition, the efficiency of the proposed methods is verified by comparisons of performance with respect to classical methods and methods based on quantification.
Fil: Di Pietro, Franco Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Materia
Simulación
Rigidos
Electronica
Cosimulacion
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/81094

id CONICETDig_0a6c1c9f90e66aa6d77a0874ed446df0
oai_identifier_str oai:ri.conicet.gov.ar:11336/81094
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulación eficiente de sistemas rígidos y conmutadosDi Pietro, Franco NicolásSimulaciónRigidosElectronicaCosimulacionhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Las imágenes por resonancia magnética (MRI por sus siglas en inglés) se han constituido como una tecnología que permite estudiar múltiples características de los tejidos in-vivo. En el estudio del cerebro, permiten describir la anatomía, la bioquímica y los cambios metabólicos a lo largo del tiempo. Sin embargo, actualmente no es posible integrar esta información multi-dominio de una forma sistemática, y lo que es más importante, con herramientas que permitan usar esa integración de una forma cuantitativa. Es por ello, que esta tesis presenta el desarrollo y estudio de numerosas técnicas de procesamiento de neuroimágenes para lograr tecnologías robustas que puedan asistir en el diagnóstico y seguimiento de enfermedades neurodegenerativas. Primeramente, se presentan la bases conceptuales para la comprensión de los estudios realizados. Posteriormente, se presentan los desarrollos metodológicos en el procesamiento avanzado de neuroimágenes, a través de los cuales es posible extraer información cuantitativa de las imágenes sin la intervención de un operador. Se presenta un trabajo realizado como introducción a la temática en el cual se logró la eliminación de los tejidos extra-cerebrales en las neuroimágenes y se comparó con otros algoritmos disponibles para resolver ese proceso. Luego, se exponen desarrollos en las tres principales modalidades con las que se ha trabajado, específicamente la imagen estructural (3D T1), imágenes ponderadas por difusión (DWI) e imágenes funcionales (fMRI). Estos desarrollos incluyen la segmentación automatizada de estructuras anátomo-funcionales a través de operaciones basadas en vóxeles y superficies deformables; la extracción de información de la disposición de tractos a partir de las DWI con un especial énfasis en el preprocesamiento para obtener resultados confiables; y dos pipelines para fMRI (uno para el paradigma por bloques y otro para fMRI en reposo) para estudiar la organización funcional del cerebro. Los métodos desarrollados permiten la integración multimodal en el espacio nativo, es decir, utilizando como base de referencia el cerebro del propio sujeto en estudio y no un atlas promedio como la mayoría de las técnicas existentes. En este contexto, se utiliza la segmentación estructural para referenciar los resultados obtenidos a estructuras anatómicas y funcionales comunes entre sujetos, permitiéndose así el estudio tanto individual como de grupos. Posteriormente se presentan diferentes investigaciones, en las cuales este marco metodológico ha sido utilizado para resolver problemas y/o responder preguntas actuales en las neurociencias. A partir de ello se presentan: i) un trabajo sobre el uso de Análisis de Componentes Independientes en fMRI en reposo y la detección automática de redes de conectividad funcional; ii) un estudio de reproducibilidad en conectividad funcional y de cómo, mediante la aplicación de un modelo biofísico, se pueden generar métricas altamente consistentes; iii) se presentan dos trabajos sobre el estudio de la neuroanatomía mediante métodos automatizados en sujetos sanos, estudiando los patrones XI XII de normalidad a lo largo de la vida y también utilizando estos descriptores neuroanatómicos para la detección de la Enfermedad de Alzheimer en el marco de una competencia internacional; y iv) se muestra, en un trabajo realizado en colaboración internacional con tres clínicas especializadas en la detección de demencias, cómo las métricas neuroanatómicas y funcionales pueden ser utilizadas de forma combinada en el diagnóstico de demencia frontotemporal. Finalmente, se presentan conclusiones y proyecciones, haciéndose un balance del recorrido realizado durante el desarrollo de la tesis. Luego se describen proyectos en marcha, que profundizan los estudios presentados, los cuales incluyen (1) mejorar el diagnóstico y detectar el estadío funcional en enfermedades neurodegenerativas, (2) ampliar su uso para la obtención de medidas en múltiples escalas espaciales y (3) aplicar las técnicas en el diagnóstico diferencial, es decir, para diferenciar entre distintas patologías con presentaciones clínicas similares.In this Thesis, new numerical integration methods for ordinary differential equations are proposed. These methods combine the ideas of classic discrete time and state quantization-based methods. As a first result, we propose an extension to linearly implicit quantized state system algorithms that avoids the appearence of spurious oscillations in the integration of certain stiff systems. Under the detection of oscillations, this algorithm performs a classic method step on a pair of states avoiding the problem. It is shown that the use of this algorithm is particularly useful for the simulation of switched circuits in presence of parasitic components. The second contribution of the Thesis is a mixed algorithm that splits a model so that a subsystem is integrated using quantized state systems methods and the remaining subsystem is integrated with a classic algorithm. This algorithm then exploits the advantages of both approaches, improving the overall simulation performance in several applications, particularly in multidomain problems. Theoretical convergence and stability results for the mixed numerical integration scheme are also obtained. In addition, the efficiency of the proposed methods is verified by comparisons of performance with respect to classical methods and methods based on quantification.Fil: Di Pietro, Franco Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaKofman, Ernesto JavierRomero, Mónica Elena2019-03-21info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/81094Di Pietro, Franco Nicolás; Kofman, Ernesto Javier; Romero, Mónica Elena; Simulación eficiente de sistemas rígidos y conmutados; 21-3-2019CONICET DigitalCONICETspainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:53:41Zoai:ri.conicet.gov.ar:11336/81094instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:53:42.012CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulación eficiente de sistemas rígidos y conmutados
title Simulación eficiente de sistemas rígidos y conmutados
spellingShingle Simulación eficiente de sistemas rígidos y conmutados
Di Pietro, Franco Nicolás
Simulación
Rigidos
Electronica
Cosimulacion
title_short Simulación eficiente de sistemas rígidos y conmutados
title_full Simulación eficiente de sistemas rígidos y conmutados
title_fullStr Simulación eficiente de sistemas rígidos y conmutados
title_full_unstemmed Simulación eficiente de sistemas rígidos y conmutados
title_sort Simulación eficiente de sistemas rígidos y conmutados
dc.creator.none.fl_str_mv Di Pietro, Franco Nicolás
author Di Pietro, Franco Nicolás
author_facet Di Pietro, Franco Nicolás
author_role author
dc.contributor.none.fl_str_mv Kofman, Ernesto Javier
Romero, Mónica Elena
dc.subject.none.fl_str_mv Simulación
Rigidos
Electronica
Cosimulacion
topic Simulación
Rigidos
Electronica
Cosimulacion
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Las imágenes por resonancia magnética (MRI por sus siglas en inglés) se han constituido como una tecnología que permite estudiar múltiples características de los tejidos in-vivo. En el estudio del cerebro, permiten describir la anatomía, la bioquímica y los cambios metabólicos a lo largo del tiempo. Sin embargo, actualmente no es posible integrar esta información multi-dominio de una forma sistemática, y lo que es más importante, con herramientas que permitan usar esa integración de una forma cuantitativa. Es por ello, que esta tesis presenta el desarrollo y estudio de numerosas técnicas de procesamiento de neuroimágenes para lograr tecnologías robustas que puedan asistir en el diagnóstico y seguimiento de enfermedades neurodegenerativas. Primeramente, se presentan la bases conceptuales para la comprensión de los estudios realizados. Posteriormente, se presentan los desarrollos metodológicos en el procesamiento avanzado de neuroimágenes, a través de los cuales es posible extraer información cuantitativa de las imágenes sin la intervención de un operador. Se presenta un trabajo realizado como introducción a la temática en el cual se logró la eliminación de los tejidos extra-cerebrales en las neuroimágenes y se comparó con otros algoritmos disponibles para resolver ese proceso. Luego, se exponen desarrollos en las tres principales modalidades con las que se ha trabajado, específicamente la imagen estructural (3D T1), imágenes ponderadas por difusión (DWI) e imágenes funcionales (fMRI). Estos desarrollos incluyen la segmentación automatizada de estructuras anátomo-funcionales a través de operaciones basadas en vóxeles y superficies deformables; la extracción de información de la disposición de tractos a partir de las DWI con un especial énfasis en el preprocesamiento para obtener resultados confiables; y dos pipelines para fMRI (uno para el paradigma por bloques y otro para fMRI en reposo) para estudiar la organización funcional del cerebro. Los métodos desarrollados permiten la integración multimodal en el espacio nativo, es decir, utilizando como base de referencia el cerebro del propio sujeto en estudio y no un atlas promedio como la mayoría de las técnicas existentes. En este contexto, se utiliza la segmentación estructural para referenciar los resultados obtenidos a estructuras anatómicas y funcionales comunes entre sujetos, permitiéndose así el estudio tanto individual como de grupos. Posteriormente se presentan diferentes investigaciones, en las cuales este marco metodológico ha sido utilizado para resolver problemas y/o responder preguntas actuales en las neurociencias. A partir de ello se presentan: i) un trabajo sobre el uso de Análisis de Componentes Independientes en fMRI en reposo y la detección automática de redes de conectividad funcional; ii) un estudio de reproducibilidad en conectividad funcional y de cómo, mediante la aplicación de un modelo biofísico, se pueden generar métricas altamente consistentes; iii) se presentan dos trabajos sobre el estudio de la neuroanatomía mediante métodos automatizados en sujetos sanos, estudiando los patrones XI XII de normalidad a lo largo de la vida y también utilizando estos descriptores neuroanatómicos para la detección de la Enfermedad de Alzheimer en el marco de una competencia internacional; y iv) se muestra, en un trabajo realizado en colaboración internacional con tres clínicas especializadas en la detección de demencias, cómo las métricas neuroanatómicas y funcionales pueden ser utilizadas de forma combinada en el diagnóstico de demencia frontotemporal. Finalmente, se presentan conclusiones y proyecciones, haciéndose un balance del recorrido realizado durante el desarrollo de la tesis. Luego se describen proyectos en marcha, que profundizan los estudios presentados, los cuales incluyen (1) mejorar el diagnóstico y detectar el estadío funcional en enfermedades neurodegenerativas, (2) ampliar su uso para la obtención de medidas en múltiples escalas espaciales y (3) aplicar las técnicas en el diagnóstico diferencial, es decir, para diferenciar entre distintas patologías con presentaciones clínicas similares.
In this Thesis, new numerical integration methods for ordinary differential equations are proposed. These methods combine the ideas of classic discrete time and state quantization-based methods. As a first result, we propose an extension to linearly implicit quantized state system algorithms that avoids the appearence of spurious oscillations in the integration of certain stiff systems. Under the detection of oscillations, this algorithm performs a classic method step on a pair of states avoiding the problem. It is shown that the use of this algorithm is particularly useful for the simulation of switched circuits in presence of parasitic components. The second contribution of the Thesis is a mixed algorithm that splits a model so that a subsystem is integrated using quantized state systems methods and the remaining subsystem is integrated with a classic algorithm. This algorithm then exploits the advantages of both approaches, improving the overall simulation performance in several applications, particularly in multidomain problems. Theoretical convergence and stability results for the mixed numerical integration scheme are also obtained. In addition, the efficiency of the proposed methods is verified by comparisons of performance with respect to classical methods and methods based on quantification.
Fil: Di Pietro, Franco Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
description Las imágenes por resonancia magnética (MRI por sus siglas en inglés) se han constituido como una tecnología que permite estudiar múltiples características de los tejidos in-vivo. En el estudio del cerebro, permiten describir la anatomía, la bioquímica y los cambios metabólicos a lo largo del tiempo. Sin embargo, actualmente no es posible integrar esta información multi-dominio de una forma sistemática, y lo que es más importante, con herramientas que permitan usar esa integración de una forma cuantitativa. Es por ello, que esta tesis presenta el desarrollo y estudio de numerosas técnicas de procesamiento de neuroimágenes para lograr tecnologías robustas que puedan asistir en el diagnóstico y seguimiento de enfermedades neurodegenerativas. Primeramente, se presentan la bases conceptuales para la comprensión de los estudios realizados. Posteriormente, se presentan los desarrollos metodológicos en el procesamiento avanzado de neuroimágenes, a través de los cuales es posible extraer información cuantitativa de las imágenes sin la intervención de un operador. Se presenta un trabajo realizado como introducción a la temática en el cual se logró la eliminación de los tejidos extra-cerebrales en las neuroimágenes y se comparó con otros algoritmos disponibles para resolver ese proceso. Luego, se exponen desarrollos en las tres principales modalidades con las que se ha trabajado, específicamente la imagen estructural (3D T1), imágenes ponderadas por difusión (DWI) e imágenes funcionales (fMRI). Estos desarrollos incluyen la segmentación automatizada de estructuras anátomo-funcionales a través de operaciones basadas en vóxeles y superficies deformables; la extracción de información de la disposición de tractos a partir de las DWI con un especial énfasis en el preprocesamiento para obtener resultados confiables; y dos pipelines para fMRI (uno para el paradigma por bloques y otro para fMRI en reposo) para estudiar la organización funcional del cerebro. Los métodos desarrollados permiten la integración multimodal en el espacio nativo, es decir, utilizando como base de referencia el cerebro del propio sujeto en estudio y no un atlas promedio como la mayoría de las técnicas existentes. En este contexto, se utiliza la segmentación estructural para referenciar los resultados obtenidos a estructuras anatómicas y funcionales comunes entre sujetos, permitiéndose así el estudio tanto individual como de grupos. Posteriormente se presentan diferentes investigaciones, en las cuales este marco metodológico ha sido utilizado para resolver problemas y/o responder preguntas actuales en las neurociencias. A partir de ello se presentan: i) un trabajo sobre el uso de Análisis de Componentes Independientes en fMRI en reposo y la detección automática de redes de conectividad funcional; ii) un estudio de reproducibilidad en conectividad funcional y de cómo, mediante la aplicación de un modelo biofísico, se pueden generar métricas altamente consistentes; iii) se presentan dos trabajos sobre el estudio de la neuroanatomía mediante métodos automatizados en sujetos sanos, estudiando los patrones XI XII de normalidad a lo largo de la vida y también utilizando estos descriptores neuroanatómicos para la detección de la Enfermedad de Alzheimer en el marco de una competencia internacional; y iv) se muestra, en un trabajo realizado en colaboración internacional con tres clínicas especializadas en la detección de demencias, cómo las métricas neuroanatómicas y funcionales pueden ser utilizadas de forma combinada en el diagnóstico de demencia frontotemporal. Finalmente, se presentan conclusiones y proyecciones, haciéndose un balance del recorrido realizado durante el desarrollo de la tesis. Luego se describen proyectos en marcha, que profundizan los estudios presentados, los cuales incluyen (1) mejorar el diagnóstico y detectar el estadío funcional en enfermedades neurodegenerativas, (2) ampliar su uso para la obtención de medidas en múltiples escalas espaciales y (3) aplicar las técnicas en el diagnóstico diferencial, es decir, para diferenciar entre distintas patologías con presentaciones clínicas similares.
publishDate 2019
dc.date.none.fl_str_mv 2019-03-21
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/81094
Di Pietro, Franco Nicolás; Kofman, Ernesto Javier; Romero, Mónica Elena; Simulación eficiente de sistemas rígidos y conmutados; 21-3-2019
CONICET Digital
CONICET
url http://hdl.handle.net/11336/81094
identifier_str_mv Di Pietro, Franco Nicolás; Kofman, Ernesto Javier; Romero, Mónica Elena; Simulación eficiente de sistemas rígidos y conmutados; 21-3-2019
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613637154537472
score 13.070432