The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism

Autores
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.
Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
CURVATURE
TORSION
PALATINI
GRAVITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210000

id CONICETDig_09211652b9a00af34a95a01cea4a9aab
oai_identifier_str oai:ri.conicet.gov.ar:11336/210000
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalismOsorio Morales, Maria JulianaSantillán, Osvaldo PabloCURVATURETORSIONPALATINIGRAVITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaIOP Publishing2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210000Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-200264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac3e4einfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac3e4einfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.08269v3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:58Zoai:ri.conicet.gov.ar:11336/210000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:58.678CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
title The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
spellingShingle The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
Osorio Morales, Maria Juliana
CURVATURE
TORSION
PALATINI
GRAVITY
title_short The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
title_full The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
title_fullStr The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
title_full_unstemmed The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
title_sort The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
dc.creator.none.fl_str_mv Osorio Morales, Maria Juliana
Santillán, Osvaldo Pablo
author Osorio Morales, Maria Juliana
author_facet Osorio Morales, Maria Juliana
Santillán, Osvaldo Pablo
author_role author
author2 Santillán, Osvaldo Pablo
author2_role author
dc.subject.none.fl_str_mv CURVATURE
TORSION
PALATINI
GRAVITY
topic CURVATURE
TORSION
PALATINI
GRAVITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.
Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.
publishDate 2021
dc.date.none.fl_str_mv 2021-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210000
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-20
0264-9381
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210000
identifier_str_mv Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-20
0264-9381
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac3e4e
info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac3e4e
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.08269v3
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269829500764160
score 13.13397