The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism
- Autores
- Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.
Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
CURVATURE
TORSION
PALATINI
GRAVITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210000
Ver los metadatos del registro completo
id |
CONICETDig_09211652b9a00af34a95a01cea4a9aab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210000 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalismOsorio Morales, Maria JulianaSantillán, Osvaldo PabloCURVATURETORSIONPALATINIGRAVITYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent.Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaIOP Publishing2021-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210000Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-200264-9381CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac3e4einfo:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac3e4einfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.08269v3info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:58Zoai:ri.conicet.gov.ar:11336/210000instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:58.678CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
title |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
spellingShingle |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism Osorio Morales, Maria Juliana CURVATURE TORSION PALATINI GRAVITY |
title_short |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
title_full |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
title_fullStr |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
title_full_unstemmed |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
title_sort |
The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism |
dc.creator.none.fl_str_mv |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
author |
Osorio Morales, Maria Juliana |
author_facet |
Osorio Morales, Maria Juliana Santillán, Osvaldo Pablo |
author_role |
author |
author2 |
Santillán, Osvaldo Pablo |
author2_role |
author |
dc.subject.none.fl_str_mv |
CURVATURE TORSION PALATINI GRAVITY |
topic |
CURVATURE TORSION PALATINI GRAVITY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent. Fil: Osorio Morales, Maria Juliana. Universidad de San Andrés; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
As is known from studies of gravity models in the Palatini formalism, there exist two inequivalent definitions of the generalized Ricci tensor in terms of the generalized curvature namely, Rμν=Rμρνρ and Rνμ=gαβRανβμ. A deep formal investigation of theories with Lagrangians of the form L=L(R(μ ν) was initiated in Alfonso et al (2017 Class. Quantum Grav. 34 235003). In that work, the authors leave the connection free, and find out that the torsion only appears as a projective mode. This agrees with the widely employed condition of vanishing torsion in these theories as a simple gauge choice. In the present work the complementary scenario is studied namely, the one described by a Lagrangian that depends on the other possible Ricci tensor L = L(R (μν)). The torsion is completely characterized in terms of the metric and the connection, and a rather detailed description of the equations of motion is presented. It is shown that these theories are non trivial even for 1 + 1 space time dimensions, and admit non zero torsion even in this apparently simple case. It is suggested that to impose zero torsion by force may result into an incompatible system. In other words, the presence of torsion may be beneficial for insuring that the equations of motion are well posed. The results of the present paper do not contradict the ones of Alfonso et al (2017 Class. Quantum Grav. 34 235003), as the underlying theories are inequivalent. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210000 Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-20 0264-9381 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210000 |
identifier_str_mv |
Osorio Morales, Maria Juliana; Santillán, Osvaldo Pablo; The appearance of non trivial torsion for some Ricci dependent theories in the Palatini formalism; IOP Publishing; Classical and Quantum Gravity; 39; 2; 12-2021; 1-20 0264-9381 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1361-6382/ac3e4e info:eu-repo/semantics/altIdentifier/doi/10.1088/1361-6382/ac3e4e info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.08269v3 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269829500764160 |
score |
13.13397 |