Effect of halogen dopants on the properties of Li2O2: Is chloride special?

Autores
Cortés Páez, Henry Andrés; Vildosola, Veronica Laura; Barral, María Andrea; Corti, Horacio Roberto
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.
Fil: Cortés Páez, Henry Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Barral, María Andrea. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Materia
Litium
Battery
dopants
halogens
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/123914

id CONICETDig_07fd09b5ffa8011f151647c7dab68c5f
oai_identifier_str oai:ri.conicet.gov.ar:11336/123914
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of halogen dopants on the properties of Li2O2: Is chloride special?Cortés Páez, Henry AndrésVildosola, Veronica LauraBarral, María AndreaCorti, Horacio RobertoLitiumBatterydopantshalogenshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.Fil: Cortés Páez, Henry Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Barral, María Andrea. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaRoyal Society of Chemistry2019-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123914Cortés Páez, Henry Andrés; Vildosola, Veronica Laura; Barral, María Andrea; Corti, Horacio Roberto; Effect of halogen dopants on the properties of Li2O2: Is chloride special?; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 20; 25; 6-2019; 16924-169311463-9076CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1039/C8CP01211Cinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:06:46Zoai:ri.conicet.gov.ar:11336/123914instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:06:46.974CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of halogen dopants on the properties of Li2O2: Is chloride special?
title Effect of halogen dopants on the properties of Li2O2: Is chloride special?
spellingShingle Effect of halogen dopants on the properties of Li2O2: Is chloride special?
Cortés Páez, Henry Andrés
Litium
Battery
dopants
halogens
title_short Effect of halogen dopants on the properties of Li2O2: Is chloride special?
title_full Effect of halogen dopants on the properties of Li2O2: Is chloride special?
title_fullStr Effect of halogen dopants on the properties of Li2O2: Is chloride special?
title_full_unstemmed Effect of halogen dopants on the properties of Li2O2: Is chloride special?
title_sort Effect of halogen dopants on the properties of Li2O2: Is chloride special?
dc.creator.none.fl_str_mv Cortés Páez, Henry Andrés
Vildosola, Veronica Laura
Barral, María Andrea
Corti, Horacio Roberto
author Cortés Páez, Henry Andrés
author_facet Cortés Páez, Henry Andrés
Vildosola, Veronica Laura
Barral, María Andrea
Corti, Horacio Roberto
author_role author
author2 Vildosola, Veronica Laura
Barral, María Andrea
Corti, Horacio Roberto
author2_role author
author
author
dc.subject.none.fl_str_mv Litium
Battery
dopants
halogens
topic Litium
Battery
dopants
halogens
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.
Fil: Cortés Páez, Henry Andrés. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Vildosola, Veronica Laura. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Barral, María Andrea. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
Fil: Corti, Horacio Roberto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina
description There is consensus on the fact that one of the main limitations of Li air batteries (LABs) is the insulating character of Li2O2 and that it becomes crucial to explore new conduction paths. Recent studies indicate that doping with chloride increases the ion conductivity of Li2O2, although to a much lesser extent than expected if chloride is assumed to be a donor dopant [Gerbig et al., Adv. Mater., 2013, 25, 3129]. Subsequently, it has been shown that the addition of lithium chloride, LiCl, to the battery electrolyte increases its discharge capacity, while this effect is not observed with other halogens [Matsuda et al., J. Phys. Chem. C, 2016, 120, 13360]. This fact was attributed to an increase in the conductivity of Cl-doped Li2O2, but still the responsible mechanism is not clear. In this work, we have performed first principle calculations to study the effect of the different halogens (F, Cl, Br, I) as substitutional defects on the electronic and transport properties of Li2O2. We have calculated the formation energies of the different defects and impurities and we analysed how they affect the activation barriers and diffusion coefficients. We have demonstrated that the chloride does not behave like a donor dopant, thus explaining the meager increase of the ionic conductivity experimentally observed, and neither does it promote polaron formation and mobility. We have also found that chloride does not present any special behaviour among the halogen series. Our results reveal that all the studied configurations associated with the halogen defects do not derive metallic states nor extra polarons that would increase considerably the electronic conductivity. This is mainly due to the ionic characteristics of the Li2O2 crystal and the capability of the oxygen dimers to adapt its valence rather than to the nature of the dopant itself.
publishDate 2019
dc.date.none.fl_str_mv 2019-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/123914
Cortés Páez, Henry Andrés; Vildosola, Veronica Laura; Barral, María Andrea; Corti, Horacio Roberto; Effect of halogen dopants on the properties of Li2O2: Is chloride special?; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 20; 25; 6-2019; 16924-16931
1463-9076
CONICET Digital
CONICET
url http://hdl.handle.net/11336/123914
identifier_str_mv Cortés Páez, Henry Andrés; Vildosola, Veronica Laura; Barral, María Andrea; Corti, Horacio Roberto; Effect of halogen dopants on the properties of Li2O2: Is chloride special?; Royal Society of Chemistry; Physical Chemistry Chemical Physics; 20; 25; 6-2019; 16924-16931
1463-9076
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1039/C8CP01211C
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Royal Society of Chemistry
publisher.none.fl_str_mv Royal Society of Chemistry
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083210735255552
score 13.22299