Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity

Autores
Urán, Soledad Lucía; Gomez Casati, Maria Eugenia; Guelman, Laura Ruth
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Sound is an important part of man´s contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97dB SPL, 2h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
Fil: Urán, Soledad Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Gomez Casati, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Farmacología; Argentina
Fil: Guelman, Laura Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina
Materia
Noise
Hippocampus
Developing Cns
Auditory Pathway
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3951

id CONICETDig_06d2dd28348e03617b569996ead61f54
oai_identifier_str oai:ri.conicet.gov.ar:11336/3951
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrityUrán, Soledad LucíaGomez Casati, Maria EugeniaGuelman, Laura RuthNoiseHippocampusDeveloping CnsAuditory Pathwayhttps://purl.org/becyt/ford/3.1https://purl.org/becyt/ford/3https://purl.org/becyt/ford/3.2https://purl.org/becyt/ford/3Sound is an important part of man´s contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97dB SPL, 2h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.Fil: Urán, Soledad Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Gomez Casati, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Farmacología; ArgentinaFil: Guelman, Laura Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; ArgentinaElsevier2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3951Urán, Soledad Lucía; Gomez Casati, Maria Eugenia; Guelman, Laura Ruth; Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity; Elsevier; International Journal of Developmental Neuroscience; 37; 10-2014; 41-510736-5748enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0736574814000847info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.ijdevneu.2014.06.002info:eu-repo/semantics/altIdentifier/issn/0736-5748info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:51:46Zoai:ri.conicet.gov.ar:11336/3951instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:51:47.059CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
title Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
spellingShingle Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
Urán, Soledad Lucía
Noise
Hippocampus
Developing Cns
Auditory Pathway
title_short Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
title_full Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
title_fullStr Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
title_full_unstemmed Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
title_sort Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity
dc.creator.none.fl_str_mv Urán, Soledad Lucía
Gomez Casati, Maria Eugenia
Guelman, Laura Ruth
author Urán, Soledad Lucía
author_facet Urán, Soledad Lucía
Gomez Casati, Maria Eugenia
Guelman, Laura Ruth
author_role author
author2 Gomez Casati, Maria Eugenia
Guelman, Laura Ruth
author2_role author
author
dc.subject.none.fl_str_mv Noise
Hippocampus
Developing Cns
Auditory Pathway
topic Noise
Hippocampus
Developing Cns
Auditory Pathway
purl_subject.fl_str_mv https://purl.org/becyt/ford/3.1
https://purl.org/becyt/ford/3
https://purl.org/becyt/ford/3.2
https://purl.org/becyt/ford/3
dc.description.none.fl_txt_mv Sound is an important part of man´s contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97dB SPL, 2h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
Fil: Urán, Soledad Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina
Fil: Gomez Casati, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular; Argentina. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Farmacología; Argentina
Fil: Guelman, Laura Ruth. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos; Argentina
description Sound is an important part of man´s contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97dB SPL, 2h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3951
Urán, Soledad Lucía; Gomez Casati, Maria Eugenia; Guelman, Laura Ruth; Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity; Elsevier; International Journal of Developmental Neuroscience; 37; 10-2014; 41-51
0736-5748
url http://hdl.handle.net/11336/3951
identifier_str_mv Urán, Soledad Lucía; Gomez Casati, Maria Eugenia; Guelman, Laura Ruth; Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity; Elsevier; International Journal of Developmental Neuroscience; 37; 10-2014; 41-51
0736-5748
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0736574814000847
info:eu-repo/semantics/altIdentifier/url/http://dx.doi.org/10.1016/j.ijdevneu.2014.06.002
info:eu-repo/semantics/altIdentifier/issn/0736-5748
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083044611457024
score 13.22299