Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
- Autores
- Dalosto, Sergio Daniel; Levine, Zachary
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Levine, Zachary. National Institute of Standards and Technology; Estados Unidos - Materia
- Graphene
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19785
Ver los metadatos del registro completo
id |
CONICETDig_06986c366633c030173517334131f079 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19785 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar MoleculeDalosto, Sergio DanielLevine, ZacharyGraphenehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Levine, Zachary. National Institute of Standards and Technology; Estados UnidosAmerican Chemical Society2008-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19785Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-81991932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp711524yinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711524yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:13Zoai:ri.conicet.gov.ar:11336/19785instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:13.747CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
title |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
spellingShingle |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule Dalosto, Sergio Daniel Graphene |
title_short |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
title_full |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
title_fullStr |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
title_full_unstemmed |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
title_sort |
Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule |
dc.creator.none.fl_str_mv |
Dalosto, Sergio Daniel Levine, Zachary |
author |
Dalosto, Sergio Daniel |
author_facet |
Dalosto, Sergio Daniel Levine, Zachary |
author_role |
author |
author2 |
Levine, Zachary |
author2_role |
author |
dc.subject.none.fl_str_mv |
Graphene |
topic |
Graphene |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices. Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Levine, Zachary. National Institute of Standards and Technology; Estados Unidos |
description |
Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19785 Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-8199 1932-7447 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19785 |
identifier_str_mv |
Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-8199 1932-7447 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp711524y info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711524y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Chemical Society |
publisher.none.fl_str_mv |
American Chemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082598031327232 |
score |
13.22299 |