Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule

Autores
Dalosto, Sergio Daniel; Levine, Zachary
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Levine, Zachary. National Institute of Standards and Technology; Estados Unidos
Materia
Graphene
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19785

id CONICETDig_06986c366633c030173517334131f079
oai_identifier_str oai:ri.conicet.gov.ar:11336/19785
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar MoleculeDalosto, Sergio DanielLevine, ZacharyGraphenehttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Levine, Zachary. National Institute of Standards and Technology; Estados UnidosAmerican Chemical Society2008-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19785Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-81991932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp711524yinfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711524yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:13Zoai:ri.conicet.gov.ar:11336/19785instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:13.747CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
title Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
spellingShingle Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
Dalosto, Sergio Daniel
Graphene
title_short Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
title_full Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
title_fullStr Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
title_full_unstemmed Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
title_sort Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule
dc.creator.none.fl_str_mv Dalosto, Sergio Daniel
Levine, Zachary
author Dalosto, Sergio Daniel
author_facet Dalosto, Sergio Daniel
Levine, Zachary
author_role author
author2 Levine, Zachary
author2_role author
dc.subject.none.fl_str_mv Graphene
topic Graphene
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Levine, Zachary. National Institute of Standards and Technology; Estados Unidos
description Graphene nanoribbons with both armchair- and zigzag-shaped hydrogen-passivated edges (AGNR and ZGNR) have band gaps which depend on the width of the ribbon. In particular, a ZGNR has localized electronic states at the edge which decay exponentially toward the center of the ribbon. Interestingly, application of a uniform external electric field (Eext) in the direction perpendicular to the edge of a ZGNR is capable of reducing the band gap for one spin state (beta) and opens the other spin state (alpha). Moreover, for a critical Eext the ZGNR becomes half-metallic. In the case of an 8-chain zigzag ribbon, the critical Eext is 2 V/nm within the local spin density approximation. Motivated by these findings, we study the influence on the gap of the electric field produced by a polar ad-molecule to the surface of an 8-zigzag ribbon. The formula units of the ad-molecules that we studied are NH3(CH)6CO2 and NH3(CH)10CO2. We show that within the generalized gradient approximation the band gap of 0.52 eV without ad-molecule is reduced to 0.27 eV for the beta-spin state and increased to 0.69 eV for the R-spin state. Also, combining the ad-molecule and Eext ) 1 V/nm parallel to the dipole moment of the ad-molecule induces a reduction of the beta-spin band gap and an increase for the R-spin band gap. For Eext ) -1 V/nm, antiparallel to the dipole moment of the ad-molecule, the band gap for both spin states is similar to the case without ad-molecule and Eext. These results suggest possible uses for the graphene nanoribbons as sensors or switching devices.
publishDate 2008
dc.date.none.fl_str_mv 2008-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19785
Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-8199
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19785
identifier_str_mv Dalosto, Sergio Daniel; Levine, Zachary; Controlling the Band Gap in Zigzag Graphene Nanoribbons with an Electric Field Induced by a Polar Molecule; American Chemical Society; Journal of Physical Chemistry C; 112; 22; 5-2008; 8196-8199
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jp711524y
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp711524y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082598031327232
score 13.22299