Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap

Autores
Dalosto, Sergio Daniel; Tinte, Silvia Noemi
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We investigate how a box of water molecules affects the HOMO-LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO-LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate α and β gaps, we find that, in a solvated GND, that degeneracy is broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/Å computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Carbon Nanotubes
Antiferromagnetism
Confined Flow
Electric Fields
Electronic Properties
Hydrogen
Hydrogen Bonds
Magnetic Properties
Molecules
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76341

id CONICETDig_89ccb9dbd3126924209eaef888128a10
oai_identifier_str oai:ri.conicet.gov.ar:11336/76341
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band GapDalosto, Sergio DanielTinte, Silvia NoemiCarbon NanotubesAntiferromagnetismConfined FlowElectric FieldsElectronic PropertiesHydrogenHydrogen BondsMagnetic PropertiesMoleculeshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We investigate how a box of water molecules affects the HOMO-LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO-LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate α and β gaps, we find that, in a solvated GND, that degeneracy is broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/Å computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaAmerican Chemical Society2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76341Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap; American Chemical Society; Journal of Physical Chemistry C; 115; 11; 3-2011; 4381-43861932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp308174kinfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp109297pinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:23:56Zoai:ri.conicet.gov.ar:11336/76341instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:23:56.646CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
title Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
spellingShingle Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
Dalosto, Sergio Daniel
Carbon Nanotubes
Antiferromagnetism
Confined Flow
Electric Fields
Electronic Properties
Hydrogen
Hydrogen Bonds
Magnetic Properties
Molecules
title_short Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
title_full Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
title_fullStr Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
title_full_unstemmed Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
title_sort Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap
dc.creator.none.fl_str_mv Dalosto, Sergio Daniel
Tinte, Silvia Noemi
author Dalosto, Sergio Daniel
author_facet Dalosto, Sergio Daniel
Tinte, Silvia Noemi
author_role author
author2 Tinte, Silvia Noemi
author2_role author
dc.subject.none.fl_str_mv Carbon Nanotubes
Antiferromagnetism
Confined Flow
Electric Fields
Electronic Properties
Hydrogen
Hydrogen Bonds
Magnetic Properties
Molecules
topic Carbon Nanotubes
Antiferromagnetism
Confined Flow
Electric Fields
Electronic Properties
Hydrogen
Hydrogen Bonds
Magnetic Properties
Molecules
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We investigate how a box of water molecules affects the HOMO-LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO-LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate α and β gaps, we find that, in a solvated GND, that degeneracy is broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/Å computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.
Fil: Dalosto, Sergio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Tinte, Silvia Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description We investigate how a box of water molecules affects the HOMO-LUMO gap of a rectangular graphene nanodot (GND) with two zigzag and two armchair edges, using a combination of first principles and molecular mechanics, and also classical molecular dynamics. A GND is solvated in a periodic box of water molecules, and the HOMO-LUMO gap is computed for some snapshots taken from a molecular dynamics simulation. Although an isolated GND has a semiconductor state with degenerate α and β gaps, we find that, in a solvated GND, that degeneracy is broken and the gaps of both spins flavors oscillate following the time fluctuations in strength and direction of the electric field generated by the solvent at the edges. The average electric field generated by the water molecules causes an effect equivalent to applying a uniform electric field of 0.16 V/Å computed at the PBE level of theory. In particular, this field is not strong enough to change the GND semiconductor ground state to a half-metallic one in nanodots with dimensions smaller than 2.5 nm, as those studied here. These results can be useful in the design of sensors based on graphene, indicating that important fluctuations in the energy gap can occur if water molecules are present.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76341
Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap; American Chemical Society; Journal of Physical Chemistry C; 115; 11; 3-2011; 4381-4386
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76341
identifier_str_mv Dalosto, Sergio Daniel; Tinte, Silvia Noemi; Fluctuation Effects of the Electric Field Induced by Water on a Graphene Dot Band Gap; American Chemical Society; Journal of Physical Chemistry C; 115; 11; 3-2011; 4381-4386
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/jp308174k
info:eu-repo/semantics/altIdentifier/doi/10.1021/jp109297p
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614235529674752
score 13.070432