Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function
- Autores
 - Poelmans, W.; Van Raemdonck, M.; Verstichel, B.; De Baerdemacker, S.; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo Ernesto; Alcoba, Diego Ricardo; Bultinck, B.; Van Neck, D.
 - Año de publicación
 - 2015
 - Idioma
 - inglés
 - Tipo de recurso
 - artículo
 - Estado
 - versión publicada
 - Descripción
 - We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly-occupied many-electron wave function, i.e. a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2 and CN-). This work is motivated by the fact that a doubly-occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly-occupied two particle density matrices causes the associate semidefinite program to have a very favorable scaling as L3, where L is the number of spatial orbitals. Since the doubly-occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly-occupied framework.
Fil: Poelmans, W.. Center For Molecular Modeling; Bélgica
Fil: Van Raemdonck, M.. Department Of Inorganic And Physical Chemistry; Bélgica
Fil: Verstichel, B.. Center For Molecular Modeling; Bélgica
Fil: De Baerdemacker, S.. Department Of Inorganic And Physical Chemistry; Bélgica. Center For Molecular Modeling; Bélgica
Fil: Torre, Alicia. Facultad de Ciencia y Tecnología; España
Fil: Lain, Luis. Facultad de Ciencia y Tecnología; España
Fil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo Basico Comun. Departamento de Física, Química y Matemática; Argentina
Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Bultinck, B.. Department Of Inorganic And Physical Chemistry; Bélgica
Fil: Van Neck, D.. Center For Molecular Modeling; Bélgica - Materia
 - -
 - Nivel de accesibilidad
 - acceso abierto
 - Condiciones de uso
 - https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
 - Repositorio
 .jpg)
- Institución
 - Consejo Nacional de Investigaciones Científicas y Técnicas
 - OAI Identificador
 - oai:ri.conicet.gov.ar:11336/48126
 
Ver los metadatos del registro completo
| id | 
                                CONICETDig_060e6f5bead8cc623fe6cdc3b26a6d9e | 
      
|---|---|
| oai_identifier_str | 
                                oai:ri.conicet.gov.ar:11336/48126 | 
      
| network_acronym_str | 
                                CONICETDig | 
      
| repository_id_str | 
                                3498 | 
      
| network_name_str | 
                                CONICET Digital (CONICET) | 
      
| spelling | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave FunctionPoelmans, W.Van Raemdonck, M.Verstichel, B.De Baerdemacker, S.Torre, AliciaLain, LuisMassaccesi, Gustavo ErnestoAlcoba, Diego RicardoBultinck, B.Van Neck, D.-https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly-occupied many-electron wave function, i.e. a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2 and CN-). This work is motivated by the fact that a doubly-occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly-occupied two particle density matrices causes the associate semidefinite program to have a very favorable scaling as L3, where L is the number of spatial orbitals. Since the doubly-occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly-occupied framework.Fil: Poelmans, W.. Center For Molecular Modeling; BélgicaFil: Van Raemdonck, M.. Department Of Inorganic And Physical Chemistry; BélgicaFil: Verstichel, B.. Center For Molecular Modeling; BélgicaFil: De Baerdemacker, S.. Department Of Inorganic And Physical Chemistry; Bélgica. Center For Molecular Modeling; BélgicaFil: Torre, Alicia. Facultad de Ciencia y Tecnología; EspañaFil: Lain, Luis. Facultad de Ciencia y Tecnología; EspañaFil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo Basico Comun. Departamento de Física, Química y Matemática; ArgentinaFil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Bultinck, B.. Department Of Inorganic And Physical Chemistry; BélgicaFil: Van Neck, D.. Center For Molecular Modeling; BélgicaAmerican Chemical Society2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/48126Poelmans, W.; Van Raemdonck, M.; Verstichel, B.; De Baerdemacker, S.; Torre, Alicia; et al.; Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function; American Chemical Society; Journal of Chemical Theory and Computation; 11; 7-2015; 4064-40761549-9618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.5b00378info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00378info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:07:27Zoai:ri.conicet.gov.ar:11336/48126instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:07:27.437CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse | 
      
| dc.title.none.fl_str_mv | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| title | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| spellingShingle | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function Poelmans, W. -  | 
      
| title_short | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| title_full | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| title_fullStr | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| title_full_unstemmed | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| title_sort | 
                                Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function | 
      
| dc.creator.none.fl_str_mv | 
                                Poelmans, W. Van Raemdonck, M. Verstichel, B. De Baerdemacker, S. Torre, Alicia Lain, Luis Massaccesi, Gustavo Ernesto Alcoba, Diego Ricardo Bultinck, B. Van Neck, D.  | 
      
| author | 
                                Poelmans, W. | 
      
| author_facet | 
                                Poelmans, W. Van Raemdonck, M. Verstichel, B. De Baerdemacker, S. Torre, Alicia Lain, Luis Massaccesi, Gustavo Ernesto Alcoba, Diego Ricardo Bultinck, B. Van Neck, D.  | 
      
| author_role | 
                                author | 
      
| author2 | 
                                Van Raemdonck, M. Verstichel, B. De Baerdemacker, S. Torre, Alicia Lain, Luis Massaccesi, Gustavo Ernesto Alcoba, Diego Ricardo Bultinck, B. Van Neck, D.  | 
      
| author2_role | 
                                author author author author author author author author author  | 
      
| dc.subject.none.fl_str_mv | 
                                - | 
      
| topic | 
                                - | 
      
| purl_subject.fl_str_mv | 
                                https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1  | 
      
| dc.description.none.fl_txt_mv | 
                                We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly-occupied many-electron wave function, i.e. a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2 and CN-). This work is motivated by the fact that a doubly-occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly-occupied two particle density matrices causes the associate semidefinite program to have a very favorable scaling as L3, where L is the number of spatial orbitals. Since the doubly-occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly-occupied framework. Fil: Poelmans, W.. Center For Molecular Modeling; Bélgica Fil: Van Raemdonck, M.. Department Of Inorganic And Physical Chemistry; Bélgica Fil: Verstichel, B.. Center For Molecular Modeling; Bélgica Fil: De Baerdemacker, S.. Department Of Inorganic And Physical Chemistry; Bélgica. Center For Molecular Modeling; Bélgica Fil: Torre, Alicia. Facultad de Ciencia y Tecnología; España Fil: Lain, Luis. Facultad de Ciencia y Tecnología; España Fil: Massaccesi, Gustavo Ernesto. Universidad de Buenos Aires. Ciclo Basico Comun. Departamento de Física, Química y Matemática; Argentina Fil: Alcoba, Diego Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Bultinck, B.. Department Of Inorganic And Physical Chemistry; Bélgica Fil: Van Neck, D.. Center For Molecular Modeling; Bélgica  | 
      
| description | 
                                We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly-occupied many-electron wave function, i.e. a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2 and CN-). This work is motivated by the fact that a doubly-occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly-occupied two particle density matrices causes the associate semidefinite program to have a very favorable scaling as L3, where L is the number of spatial orbitals. Since the doubly-occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly-occupied framework. | 
      
| publishDate | 
                                2015 | 
      
| dc.date.none.fl_str_mv | 
                                2015-07 | 
      
| dc.type.none.fl_str_mv | 
                                info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo  | 
      
| format | 
                                article | 
      
| status_str | 
                                publishedVersion | 
      
| dc.identifier.none.fl_str_mv | 
                                http://hdl.handle.net/11336/48126 Poelmans, W.; Van Raemdonck, M.; Verstichel, B.; De Baerdemacker, S.; Torre, Alicia; et al.; Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function; American Chemical Society; Journal of Chemical Theory and Computation; 11; 7-2015; 4064-4076 1549-9618 CONICET Digital CONICET  | 
      
| url | 
                                http://hdl.handle.net/11336/48126 | 
      
| identifier_str_mv | 
                                Poelmans, W.; Van Raemdonck, M.; Verstichel, B.; De Baerdemacker, S.; Torre, Alicia; et al.; Variational Optimization Of The Second Order Density Matrix Derived From A Seniority-Zero Wave Function; American Chemical Society; Journal of Chemical Theory and Computation; 11; 7-2015; 4064-4076 1549-9618 CONICET Digital CONICET  | 
      
| dc.language.none.fl_str_mv | 
                                eng | 
      
| language | 
                                eng | 
      
| dc.relation.none.fl_str_mv | 
                                info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.jctc.5b00378 info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00378  | 
      
| dc.rights.none.fl_str_mv | 
                                info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  | 
      
| eu_rights_str_mv | 
                                openAccess | 
      
| rights_invalid_str_mv | 
                                https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ | 
      
| dc.format.none.fl_str_mv | 
                                application/pdf application/pdf  | 
      
| dc.publisher.none.fl_str_mv | 
                                American Chemical Society | 
      
| publisher.none.fl_str_mv | 
                                American Chemical Society | 
      
| dc.source.none.fl_str_mv | 
                                reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas  | 
      
| reponame_str | 
                                CONICET Digital (CONICET) | 
      
| collection | 
                                CONICET Digital (CONICET) | 
      
| instname_str | 
                                Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.name.fl_str_mv | 
                                CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas | 
      
| repository.mail.fl_str_mv | 
                                dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar | 
      
| _version_ | 
                                1847426877705158656 | 
      
| score | 
                                13.10058 |