On the Multiplicity of Isolated Roots of Sparse Polynomial Systems
- Autores
- Herrero, Maria Isabel; Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We give formulas for the multiplicity of any affine isolated zero of a generic polynomial system of n equations in n unknowns with prescribed sets of monomials. First, we consider sets of supports such that the origin is an isolated root of the corresponding generic system and prove formulas for its multiplicity. Then, we apply these formulas to solve the problem in the general case, by showing that the multiplicity of an arbitrary affine isolated zero of a generic system with given supports equals the multiplicity of the origin as a common zero of a generic system with an associated family of supports. The formulas obtained are in the spirit of the classical Bernstein’s theorem, in the sense that they depend on the combinatorial structure of the system, namely, geometric numerical invariants associated to the supports, such as mixed volumes of convex sets and, alternatively, mixed integrals of convex functions.
Fil: Herrero, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina - Materia
-
MIXED VOLUMES AND MIXED INTEGRALS
MULTIPLICITY OF ZEROS
NEWTON POLYTOPES
SPARSE POLYNOMIAL SYSTEMS - Nivel de accesibilidad
- acceso embargado
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89066
Ver los metadatos del registro completo
id |
CONICETDig_059a02f9c8c3eff1cee23dee787d0663 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89066 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the Multiplicity of Isolated Roots of Sparse Polynomial SystemsHerrero, Maria IsabelJeronimo, Gabriela TaliSabia, Juan Vicente RafaelMIXED VOLUMES AND MIXED INTEGRALSMULTIPLICITY OF ZEROSNEWTON POLYTOPESSPARSE POLYNOMIAL SYSTEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We give formulas for the multiplicity of any affine isolated zero of a generic polynomial system of n equations in n unknowns with prescribed sets of monomials. First, we consider sets of supports such that the origin is an isolated root of the corresponding generic system and prove formulas for its multiplicity. Then, we apply these formulas to solve the problem in the general case, by showing that the multiplicity of an arbitrary affine isolated zero of a generic system with given supports equals the multiplicity of the origin as a common zero of a generic system with an associated family of supports. The formulas obtained are in the spirit of the classical Bernstein’s theorem, in the sense that they depend on the combinatorial structure of the system, namely, geometric numerical invariants associated to the supports, such as mixed volumes of convex sets and, alternatively, mixed integrals of convex functions.Fil: Herrero, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaSpringer2019-12info:eu-repo/date/embargoEnd/2020-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89066Herrero, Maria Isabel; Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; On the Multiplicity of Isolated Roots of Sparse Polynomial Systems; Springer; Discrete And Computational Geometry; 62; 4; 12-2019; 788-8120179-5376CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00454-018-0025-xinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-018-0025-xinfo:eu-repo/semantics/embargoedAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:36:34Zoai:ri.conicet.gov.ar:11336/89066instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:36:34.687CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
title |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
spellingShingle |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems Herrero, Maria Isabel MIXED VOLUMES AND MIXED INTEGRALS MULTIPLICITY OF ZEROS NEWTON POLYTOPES SPARSE POLYNOMIAL SYSTEMS |
title_short |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
title_full |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
title_fullStr |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
title_full_unstemmed |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
title_sort |
On the Multiplicity of Isolated Roots of Sparse Polynomial Systems |
dc.creator.none.fl_str_mv |
Herrero, Maria Isabel Jeronimo, Gabriela Tali Sabia, Juan Vicente Rafael |
author |
Herrero, Maria Isabel |
author_facet |
Herrero, Maria Isabel Jeronimo, Gabriela Tali Sabia, Juan Vicente Rafael |
author_role |
author |
author2 |
Jeronimo, Gabriela Tali Sabia, Juan Vicente Rafael |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MIXED VOLUMES AND MIXED INTEGRALS MULTIPLICITY OF ZEROS NEWTON POLYTOPES SPARSE POLYNOMIAL SYSTEMS |
topic |
MIXED VOLUMES AND MIXED INTEGRALS MULTIPLICITY OF ZEROS NEWTON POLYTOPES SPARSE POLYNOMIAL SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We give formulas for the multiplicity of any affine isolated zero of a generic polynomial system of n equations in n unknowns with prescribed sets of monomials. First, we consider sets of supports such that the origin is an isolated root of the corresponding generic system and prove formulas for its multiplicity. Then, we apply these formulas to solve the problem in the general case, by showing that the multiplicity of an arbitrary affine isolated zero of a generic system with given supports equals the multiplicity of the origin as a common zero of a generic system with an associated family of supports. The formulas obtained are in the spirit of the classical Bernstein’s theorem, in the sense that they depend on the combinatorial structure of the system, namely, geometric numerical invariants associated to the supports, such as mixed volumes of convex sets and, alternatively, mixed integrals of convex functions. Fil: Herrero, Maria Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Jeronimo, Gabriela Tali. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Sabia, Juan Vicente Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; Argentina |
description |
We give formulas for the multiplicity of any affine isolated zero of a generic polynomial system of n equations in n unknowns with prescribed sets of monomials. First, we consider sets of supports such that the origin is an isolated root of the corresponding generic system and prove formulas for its multiplicity. Then, we apply these formulas to solve the problem in the general case, by showing that the multiplicity of an arbitrary affine isolated zero of a generic system with given supports equals the multiplicity of the origin as a common zero of a generic system with an associated family of supports. The formulas obtained are in the spirit of the classical Bernstein’s theorem, in the sense that they depend on the combinatorial structure of the system, namely, geometric numerical invariants associated to the supports, such as mixed volumes of convex sets and, alternatively, mixed integrals of convex functions. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12 info:eu-repo/date/embargoEnd/2020-07-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89066 Herrero, Maria Isabel; Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; On the Multiplicity of Isolated Roots of Sparse Polynomial Systems; Springer; Discrete And Computational Geometry; 62; 4; 12-2019; 788-812 0179-5376 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89066 |
identifier_str_mv |
Herrero, Maria Isabel; Jeronimo, Gabriela Tali; Sabia, Juan Vicente Rafael; On the Multiplicity of Isolated Roots of Sparse Polynomial Systems; Springer; Discrete And Computational Geometry; 62; 4; 12-2019; 788-812 0179-5376 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00454-018-0025-x info:eu-repo/semantics/altIdentifier/doi/10.1007/s00454-018-0025-x |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
embargoedAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614386374672384 |
score |
13.070432 |