Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling

Autores
Jobst, Beatrice M.; Hindriks, Rikkert; Laufs, Helmut; Tagliazucchi, Enzo Rodolfo; Hahn, Gerald; Ponce-Alvarez, Adrián; Stevner, Angus B. A.; Kringelbach, Morten L.; Deco, Gustavo
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.
Fil: Jobst, Beatrice M.. Universitat Pompeu Fabra; España
Fil: Hindriks, Rikkert. Universitat Pompeu Fabra; España
Fil: Laufs, Helmut. Christian-albrechts-universitat Zu Kiel; . Universitatsklinikum Schleswig-holstein Campus Kiel;
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hahn, Gerald. Universitat Pompeu Fabra; España
Fil: Ponce-Alvarez, Adrián. Universitat Pompeu Fabra; España
Fil: Stevner, Angus B. A.. University of Oxford; Reino Unido
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca
Fil: Deco, Gustavo. Monash University; Australia. Max Planck Institut Fur Kognitions- Und Neurowissenschaften; . Institucio Catalana de Recerca I Estudis Avancats; . Universitat Pompeu Fabra; España
Materia
MODELING
SLEEP
CONSCIOUSNESS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55648

id CONICETDig_0541b573fdf7839d4a6037d46b3b5f20
oai_identifier_str oai:ri.conicet.gov.ar:11336/55648
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational ModellingJobst, Beatrice M.Hindriks, RikkertLaufs, HelmutTagliazucchi, Enzo RodolfoHahn, GeraldPonce-Alvarez, AdriánStevner, Angus B. A.Kringelbach, Morten L.Deco, GustavoMODELINGSLEEPCONSCIOUSNESShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.Fil: Jobst, Beatrice M.. Universitat Pompeu Fabra; EspañaFil: Hindriks, Rikkert. Universitat Pompeu Fabra; EspañaFil: Laufs, Helmut. Christian-albrechts-universitat Zu Kiel; . Universitatsklinikum Schleswig-holstein Campus Kiel;Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Hahn, Gerald. Universitat Pompeu Fabra; EspañaFil: Ponce-Alvarez, Adrián. Universitat Pompeu Fabra; EspañaFil: Stevner, Angus B. A.. University of Oxford; Reino UnidoFil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; DinamarcaFil: Deco, Gustavo. Monash University; Australia. Max Planck Institut Fur Kognitions- Und Neurowissenschaften; . Institucio Catalana de Recerca I Estudis Avancats; . Universitat Pompeu Fabra; EspañaNature Publishing Group2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55648Jobst, Beatrice M.; Hindriks, Rikkert; Laufs, Helmut; Tagliazucchi, Enzo Rodolfo; Hahn, Gerald; et al.; Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling; Nature Publishing Group; Scientific Reports; 7; 1; 12-20172045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-017-04522-xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:15:46Zoai:ri.conicet.gov.ar:11336/55648instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:15:46.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
title Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
spellingShingle Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
Jobst, Beatrice M.
MODELING
SLEEP
CONSCIOUSNESS
title_short Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
title_full Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
title_fullStr Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
title_full_unstemmed Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
title_sort Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling
dc.creator.none.fl_str_mv Jobst, Beatrice M.
Hindriks, Rikkert
Laufs, Helmut
Tagliazucchi, Enzo Rodolfo
Hahn, Gerald
Ponce-Alvarez, Adrián
Stevner, Angus B. A.
Kringelbach, Morten L.
Deco, Gustavo
author Jobst, Beatrice M.
author_facet Jobst, Beatrice M.
Hindriks, Rikkert
Laufs, Helmut
Tagliazucchi, Enzo Rodolfo
Hahn, Gerald
Ponce-Alvarez, Adrián
Stevner, Angus B. A.
Kringelbach, Morten L.
Deco, Gustavo
author_role author
author2 Hindriks, Rikkert
Laufs, Helmut
Tagliazucchi, Enzo Rodolfo
Hahn, Gerald
Ponce-Alvarez, Adrián
Stevner, Angus B. A.
Kringelbach, Morten L.
Deco, Gustavo
author2_role author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MODELING
SLEEP
CONSCIOUSNESS
topic MODELING
SLEEP
CONSCIOUSNESS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.
Fil: Jobst, Beatrice M.. Universitat Pompeu Fabra; España
Fil: Hindriks, Rikkert. Universitat Pompeu Fabra; España
Fil: Laufs, Helmut. Christian-albrechts-universitat Zu Kiel; . Universitatsklinikum Schleswig-holstein Campus Kiel;
Fil: Tagliazucchi, Enzo Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hahn, Gerald. Universitat Pompeu Fabra; España
Fil: Ponce-Alvarez, Adrián. Universitat Pompeu Fabra; España
Fil: Stevner, Angus B. A.. University of Oxford; Reino Unido
Fil: Kringelbach, Morten L.. University of Oxford; Reino Unido. University Aarhus; Dinamarca
Fil: Deco, Gustavo. Monash University; Australia. Max Planck Institut Fur Kognitions- Und Neurowissenschaften; . Institucio Catalana de Recerca I Estudis Avancats; . Universitat Pompeu Fabra; España
description Recent research has found that the human sleep cycle is characterised by changes in spatiotemporal patterns of brain activity. Yet, we are still missing a mechanistic explanation of the local neuronal dynamics underlying these changes. We used whole-brain computational modelling to study the differences in global brain functional connectivity and synchrony of fMRI activity in healthy humans during wakefulness and slow-wave sleep. We applied a whole-brain model based on the normal form of a supercritical Hopf bifurcation and studied the dynamical changes when adapting the bifurcation parameter for all brain nodes to best match wakefulness and slow-wave sleep. Furthermore, we analysed differences in effective connectivity between the two states. In addition to significant changes in functional connectivity, synchrony and metastability, this analysis revealed a significant shift of the global dynamic working point of brain dynamics, from the edge of the transition between damped to sustained oscillations during wakefulness, to a stable focus during slow-wave sleep. Moreover, we identified a significant global decrease in effective interactions during slow-wave sleep. These results suggest a mechanism for the empirical functional changes observed during slow-wave sleep, namely a global shift of the brain's dynamic working point leading to increased stability and decreased effective connectivity.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55648
Jobst, Beatrice M.; Hindriks, Rikkert; Laufs, Helmut; Tagliazucchi, Enzo Rodolfo; Hahn, Gerald; et al.; Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling; Nature Publishing Group; Scientific Reports; 7; 1; 12-2017
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55648
identifier_str_mv Jobst, Beatrice M.; Hindriks, Rikkert; Laufs, Helmut; Tagliazucchi, Enzo Rodolfo; Hahn, Gerald; et al.; Increased Stability and Breakdown of Brain Effective Connectivity during Slow-Wave Sleep: Mechanistic Insights from Whole-Brain Computational Modelling; Nature Publishing Group; Scientific Reports; 7; 1; 12-2017
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-017-04522-x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614095880323072
score 13.070432