Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate film...

Autores
De'nobili, Maria Dolores; Rojas, Ana Maria Luisa; Abrami, Michela; Lapasin, Romano; Grassi, Mario
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Pectin (P) and pectin–alginate (PAL) edible films, developed for antioxidant preservation, were placed on agar cylinders, mimicking food materials, in order to understand the release of l-(+)-ascorbic acid (AA) from the films. To improve the release properties of polymeric systems, it is crucial to describe and understand the macro- and microscopic properties of the matrices. Rheological studies performed within linear and non linear frames permitted to select, among different polymer concentrations (0.50–2.00% w/w), a 2.00% w/w agar gel as food model as this system shows the higher pure elastic contribution. Rheological and Low Field NMR (LFNMR) tests performed on 0.50–2.00% w/w agar gels as well as on P- and PAL-films after exposure (up to 6 h) to 2.00%-agar gels, showed that in spite of the higher glycerol (plasticizer) content, P-network is characterized by more numerous calcium-junction zones than PAL-matrix. The determined average network mesh size (ξ¯) for both of P- and PAL-films did not significantly change during 6 h of contact with 2.00%-agar gel. However, due to a higher swelling degree, PAL-film leads to higher ξ¯ value and water mobility inside the polymeric network. These results are of paramount importance as “ξ¯” is the main parameter affecting the release kinetics of AA from film networks to agar gels and also the diffusion of AA into the agar gel or food.
Fil: De'nobili, Maria Dolores. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rojas, Ana Maria Luisa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Abrami, Michela. Università degli Studi di Trieste; Italia
Fil: Lapasin, Romano. Università degli Studi di Trieste; Italia
Fil: Grassi, Mario. Università degli Studi di Trieste; Italia
Materia
Agar Hydrogels
Pectin Edible Films
Pectin-Alginate Edible Films
Ascorbic Acid
Dynamic Rheology
Low Field Nmr
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/43351

id CONICETDig_04e6befafc31213bd4e2aec9c4e04ce9
oai_identifier_str oai:ri.conicet.gov.ar:11336/43351
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materialsDe'nobili, Maria DoloresRojas, Ana Maria LuisaAbrami, MichelaLapasin, RomanoGrassi, MarioAgar HydrogelsPectin Edible FilmsPectin-Alginate Edible FilmsAscorbic AcidDynamic RheologyLow Field Nmrhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2Pectin (P) and pectin–alginate (PAL) edible films, developed for antioxidant preservation, were placed on agar cylinders, mimicking food materials, in order to understand the release of l-(+)-ascorbic acid (AA) from the films. To improve the release properties of polymeric systems, it is crucial to describe and understand the macro- and microscopic properties of the matrices. Rheological studies performed within linear and non linear frames permitted to select, among different polymer concentrations (0.50–2.00% w/w), a 2.00% w/w agar gel as food model as this system shows the higher pure elastic contribution. Rheological and Low Field NMR (LFNMR) tests performed on 0.50–2.00% w/w agar gels as well as on P- and PAL-films after exposure (up to 6 h) to 2.00%-agar gels, showed that in spite of the higher glycerol (plasticizer) content, P-network is characterized by more numerous calcium-junction zones than PAL-matrix. The determined average network mesh size (ξ¯) for both of P- and PAL-films did not significantly change during 6 h of contact with 2.00%-agar gel. However, due to a higher swelling degree, PAL-film leads to higher ξ¯ value and water mobility inside the polymeric network. These results are of paramount importance as “ξ¯” is the main parameter affecting the release kinetics of AA from film networks to agar gels and also the diffusion of AA into the agar gel or food.Fil: De'nobili, Maria Dolores. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rojas, Ana Maria Luisa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Abrami, Michela. Università degli Studi di Trieste; ItaliaFil: Lapasin, Romano. Università degli Studi di Trieste; ItaliaFil: Grassi, Mario. Università degli Studi di Trieste; ItaliaElsevier2015-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/43351De'nobili, Maria Dolores; Rojas, Ana Maria Luisa; Abrami, Michela; Lapasin, Romano; Grassi, Mario; Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials; Elsevier; Journal of Food Engineering; 165; 9-11-2015; 82-920260-8774CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0260877415002253info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfoodeng.2015.05.014info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:22:06Zoai:ri.conicet.gov.ar:11336/43351instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:22:06.928CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
title Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
spellingShingle Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
De'nobili, Maria Dolores
Agar Hydrogels
Pectin Edible Films
Pectin-Alginate Edible Films
Ascorbic Acid
Dynamic Rheology
Low Field Nmr
title_short Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
title_full Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
title_fullStr Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
title_full_unstemmed Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
title_sort Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials
dc.creator.none.fl_str_mv De'nobili, Maria Dolores
Rojas, Ana Maria Luisa
Abrami, Michela
Lapasin, Romano
Grassi, Mario
author De'nobili, Maria Dolores
author_facet De'nobili, Maria Dolores
Rojas, Ana Maria Luisa
Abrami, Michela
Lapasin, Romano
Grassi, Mario
author_role author
author2 Rojas, Ana Maria Luisa
Abrami, Michela
Lapasin, Romano
Grassi, Mario
author2_role author
author
author
author
dc.subject.none.fl_str_mv Agar Hydrogels
Pectin Edible Films
Pectin-Alginate Edible Films
Ascorbic Acid
Dynamic Rheology
Low Field Nmr
topic Agar Hydrogels
Pectin Edible Films
Pectin-Alginate Edible Films
Ascorbic Acid
Dynamic Rheology
Low Field Nmr
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.11
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Pectin (P) and pectin–alginate (PAL) edible films, developed for antioxidant preservation, were placed on agar cylinders, mimicking food materials, in order to understand the release of l-(+)-ascorbic acid (AA) from the films. To improve the release properties of polymeric systems, it is crucial to describe and understand the macro- and microscopic properties of the matrices. Rheological studies performed within linear and non linear frames permitted to select, among different polymer concentrations (0.50–2.00% w/w), a 2.00% w/w agar gel as food model as this system shows the higher pure elastic contribution. Rheological and Low Field NMR (LFNMR) tests performed on 0.50–2.00% w/w agar gels as well as on P- and PAL-films after exposure (up to 6 h) to 2.00%-agar gels, showed that in spite of the higher glycerol (plasticizer) content, P-network is characterized by more numerous calcium-junction zones than PAL-matrix. The determined average network mesh size (ξ¯) for both of P- and PAL-films did not significantly change during 6 h of contact with 2.00%-agar gel. However, due to a higher swelling degree, PAL-film leads to higher ξ¯ value and water mobility inside the polymeric network. These results are of paramount importance as “ξ¯” is the main parameter affecting the release kinetics of AA from film networks to agar gels and also the diffusion of AA into the agar gel or food.
Fil: De'nobili, Maria Dolores. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Rojas, Ana Maria Luisa. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Abrami, Michela. Università degli Studi di Trieste; Italia
Fil: Lapasin, Romano. Università degli Studi di Trieste; Italia
Fil: Grassi, Mario. Università degli Studi di Trieste; Italia
description Pectin (P) and pectin–alginate (PAL) edible films, developed for antioxidant preservation, were placed on agar cylinders, mimicking food materials, in order to understand the release of l-(+)-ascorbic acid (AA) from the films. To improve the release properties of polymeric systems, it is crucial to describe and understand the macro- and microscopic properties of the matrices. Rheological studies performed within linear and non linear frames permitted to select, among different polymer concentrations (0.50–2.00% w/w), a 2.00% w/w agar gel as food model as this system shows the higher pure elastic contribution. Rheological and Low Field NMR (LFNMR) tests performed on 0.50–2.00% w/w agar gels as well as on P- and PAL-films after exposure (up to 6 h) to 2.00%-agar gels, showed that in spite of the higher glycerol (plasticizer) content, P-network is characterized by more numerous calcium-junction zones than PAL-matrix. The determined average network mesh size (ξ¯) for both of P- and PAL-films did not significantly change during 6 h of contact with 2.00%-agar gel. However, due to a higher swelling degree, PAL-film leads to higher ξ¯ value and water mobility inside the polymeric network. These results are of paramount importance as “ξ¯” is the main parameter affecting the release kinetics of AA from film networks to agar gels and also the diffusion of AA into the agar gel or food.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/43351
De'nobili, Maria Dolores; Rojas, Ana Maria Luisa; Abrami, Michela; Lapasin, Romano; Grassi, Mario; Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials; Elsevier; Journal of Food Engineering; 165; 9-11-2015; 82-92
0260-8774
CONICET Digital
CONICET
url http://hdl.handle.net/11336/43351
identifier_str_mv De'nobili, Maria Dolores; Rojas, Ana Maria Luisa; Abrami, Michela; Lapasin, Romano; Grassi, Mario; Structure characterization by means of rheological and NMR experiments as a first necessary approach to study the l-(+)-ascorbic acid diffusion from pectin and pectin/alginate films to agar hydrogels that mimic food materials; Elsevier; Journal of Food Engineering; 165; 9-11-2015; 82-92
0260-8774
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0260877415002253
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jfoodeng.2015.05.014
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981217408909312
score 12.48226