The subvariety of commutative residuated lattices represented by twist-products
- Autores
- Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety KK of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of KK , a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in KK , and we analyze the subvariety of representable algebras in KK . Finally, we consider some specific class of bounded integral commutative residuated lattices GG , and for each fixed element L∈GL∈G , we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras.
Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina
Fil: Cignoli, Roberto Leonardo Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Twist-Products
Residuated Lattices
Glivenko Residuated Lattices
Involutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/13263
Ver los metadatos del registro completo
id |
CONICETDig_04d076b7953bb14958f330b54c8507c2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/13263 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The subvariety of commutative residuated lattices represented by twist-productsBusaniche, ManuelaCignoli, Roberto Leonardo OscarTwist-ProductsResiduated LatticesGlivenko Residuated LatticesInvolutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety KK of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of KK , a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in KK , and we analyze the subvariety of representable algebras in KK . Finally, we consider some specific class of bounded integral commutative residuated lattices GG , and for each fixed element L∈GL∈G , we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras.Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; ArgentinaFil: Cignoli, Roberto Leonardo Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/13263Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; The subvariety of commutative residuated lattices represented by twist-products; Springer; Algebra Universalis; 71; 1; 3-2014; 5-220002-5240enginfo:eu-repo/semantics/altIdentifier/doi/doi:10.1007/s00012-014-0265-4info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00012-014-0265-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:10:30Zoai:ri.conicet.gov.ar:11336/13263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:10:30.277CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The subvariety of commutative residuated lattices represented by twist-products |
title |
The subvariety of commutative residuated lattices represented by twist-products |
spellingShingle |
The subvariety of commutative residuated lattices represented by twist-products Busaniche, Manuela Twist-Products Residuated Lattices Glivenko Residuated Lattices Involutions |
title_short |
The subvariety of commutative residuated lattices represented by twist-products |
title_full |
The subvariety of commutative residuated lattices represented by twist-products |
title_fullStr |
The subvariety of commutative residuated lattices represented by twist-products |
title_full_unstemmed |
The subvariety of commutative residuated lattices represented by twist-products |
title_sort |
The subvariety of commutative residuated lattices represented by twist-products |
dc.creator.none.fl_str_mv |
Busaniche, Manuela Cignoli, Roberto Leonardo Oscar |
author |
Busaniche, Manuela |
author_facet |
Busaniche, Manuela Cignoli, Roberto Leonardo Oscar |
author_role |
author |
author2 |
Cignoli, Roberto Leonardo Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
Twist-Products Residuated Lattices Glivenko Residuated Lattices Involutions |
topic |
Twist-Products Residuated Lattices Glivenko Residuated Lattices Involutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety KK of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of KK , a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in KK , and we analyze the subvariety of representable algebras in KK . Finally, we consider some specific class of bounded integral commutative residuated lattices GG , and for each fixed element L∈GL∈G , we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. Fil: Busaniche, Manuela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Santa Fe. Instituto de Matemática Aplicada "Litoral"; Argentina Fil: Cignoli, Roberto Leonardo Oscar. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Given an integral commutative residuated lattice L, the product L × L can be endowed with the structure of a commutative residuated lattice with involution that we call a twist-product. In the present paper, we study the subvariety KK of commutative residuated lattices that can be represented by twist-products. We give an equational characterization of KK , a categorical interpretation of the relation among the algebraic categories of commutative integral residuated lattices and the elements in KK , and we analyze the subvariety of representable algebras in KK . Finally, we consider some specific class of bounded integral commutative residuated lattices GG , and for each fixed element L∈GL∈G , we characterize the subalgebras of the twist-product whose negative cone is L in terms of some lattice filters of L, generalizing a result by Odintsov for generalized Heyting algebras. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/13263 Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; The subvariety of commutative residuated lattices represented by twist-products; Springer; Algebra Universalis; 71; 1; 3-2014; 5-22 0002-5240 |
url |
http://hdl.handle.net/11336/13263 |
identifier_str_mv |
Busaniche, Manuela; Cignoli, Roberto Leonardo Oscar; The subvariety of commutative residuated lattices represented by twist-products; Springer; Algebra Universalis; 71; 1; 3-2014; 5-22 0002-5240 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/doi:10.1007/s00012-014-0265-4 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007/s00012-014-0265-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270121918201856 |
score |
13.13397 |